Abstract: Network Function Virtualization (NFV) is emerging as one of the most innovative concepts in the networking landscape. By migrating network functions from dedicated mid-dleboxes to general purpose computing platforms, NFV can effectively reduce the cost to deploy and to operate large networks. However, in order to achieve its full potential, NFV needs to encompass also the radio access network allowing Mobile Virtual Network Operators to deploy custom resource allocation solutions within their virtual radio nodes. Such requirement raises several challenges in terms of performance isolation and resource provisioning. In this work we formalize the Virtual Network Function (VNF) placement problem for radio access networks as an integer linear programming problem and we propose a VNF placement heuristic. Moreover, we also present a proof-of-concept implementation of an NFV management and orchestration framework for Enterprise WLANs. The proposed architecture builds upon a programmable network fabric where pure forwarding nodes are mixed with radio and packet processing nodes leveraging on general computing platforms.
Virtual Network Functions Orchestration in Wireless Networks
Riggio, Roberto;Mohamed Rasheed, Tinku;
2015-01-01
Abstract
Abstract: Network Function Virtualization (NFV) is emerging as one of the most innovative concepts in the networking landscape. By migrating network functions from dedicated mid-dleboxes to general purpose computing platforms, NFV can effectively reduce the cost to deploy and to operate large networks. However, in order to achieve its full potential, NFV needs to encompass also the radio access network allowing Mobile Virtual Network Operators to deploy custom resource allocation solutions within their virtual radio nodes. Such requirement raises several challenges in terms of performance isolation and resource provisioning. In this work we formalize the Virtual Network Function (VNF) placement problem for radio access networks as an integer linear programming problem and we propose a VNF placement heuristic. Moreover, we also present a proof-of-concept implementation of an NFV management and orchestration framework for Enterprise WLANs. The proposed architecture builds upon a programmable network fabric where pure forwarding nodes are mixed with radio and packet processing nodes leveraging on general computing platforms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.