Real-time biosignal classification in power-constrained embedded applications is a key step in designing portable e-healtb devices requiring hardware integration along with concurrent signal processing. This paper presents an application based on a novel biomedical System-On-Chip (SoC) for signal acquisition and processing combining a homogeneous multi-core cluster with a versatile bio-potential front-end. The presented implementation acquires raw EMG signals from 3 passive gel-electrodes and classifies 3 hand gestures using a Support Vector Machine (SVM) pattern recognition algorithm. Performance matches state-of-the-art high-end systems both in terms of recognition accuracy (>S5%) and of real-time execution (gesture recognition time 300 ms). The power consumption of the employed biomedical SoC is below 10 mW, outperforming implementations on conunercial MCUs by a factor of 10, ensuring a battery life of up to 160 hours with a common Li-ion 1600 mAh battery.

A sub-10mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC

Farella, Elisabetta;
2017-01-01

Abstract

Real-time biosignal classification in power-constrained embedded applications is a key step in designing portable e-healtb devices requiring hardware integration along with concurrent signal processing. This paper presents an application based on a novel biomedical System-On-Chip (SoC) for signal acquisition and processing combining a homogeneous multi-core cluster with a versatile bio-potential front-end. The presented implementation acquires raw EMG signals from 3 passive gel-electrodes and classifies 3 hand gestures using a Support Vector Machine (SVM) pattern recognition algorithm. Performance matches state-of-the-art high-end systems both in terms of recognition accuracy (>S5%) and of real-time execution (gesture recognition time 300 ms). The power consumption of the employed biomedical SoC is below 10 mW, outperforming implementations on conunercial MCUs by a factor of 10, ensuring a battery life of up to 160 hours with a common Li-ion 1600 mAh battery.
2017
978-1-5090-6707-7
978-1-5090-6708-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/310379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact