In this chapter, the authors discuss several pertinent aspects of an automatic system that generates summaries in multiple languages for sets of topic-related news articles (multilingual multi-document summarisation), gathered by news aggregation systems. The discussion follows a framework based on Latent Semantic Analysis (LSA) because LSA was shown to be a high-performing method across many different languages. Starting from a sentence-extractive approach, the authors show how domain-specific aspects can be used and how a compression and paraphrasing method can be plugged in. They also discuss the challenging problem of summarisation evaluation in different languages. In particular, the authors describe two approaches: the first uses a parallel corpus and the second statistical machine translation.

Aspects of Multilingual News Summarisation

Turchi, Marco
2014-01-01

Abstract

In this chapter, the authors discuss several pertinent aspects of an automatic system that generates summaries in multiple languages for sets of topic-related news articles (multilingual multi-document summarisation), gathered by news aggregation systems. The discussion follows a framework based on Latent Semantic Analysis (LSA) because LSA was shown to be a high-performing method across many different languages. Starting from a sentence-extractive approach, the authors show how domain-specific aspects can be used and how a compression and paraphrasing method can be plugged in. They also discuss the challenging problem of summarisation evaluation in different languages. In particular, the authors describe two approaches: the first uses a parallel corpus and the second statistical machine translation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/307874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact