We propose a method to detect and track interacting people by employing a framework based on a Social Force Model. The method embeds plausible human behaviors to predict interactions in a crowd by iteratively minimizing the error between predictions and measurements. We model people approaching a group and restrict the group formation based on the relative velocity of candidate group members. The detected groups are then tracked by linking their interaction centers over time using a buffered graph-based tracker. We show how the proposed framework outperforms existing group localization techniques on three publicly available datasets, with improvements of up to 13% on group detection

Detection and tracking of groups in crowd

Poiesi, Fabio;
2013-01-01

Abstract

We propose a method to detect and track interacting people by employing a framework based on a Social Force Model. The method embeds plausible human behaviors to predict interactions in a crowd by iteratively minimizing the error between predictions and measurements. We model people approaching a group and restrict the group formation based on the relative velocity of candidate group members. The detected groups are then tracked by linking their interaction centers over time using a buffered graph-based tracker. We show how the proposed framework outperforms existing group localization techniques on three publicly available datasets, with improvements of up to 13% on group detection
2013
978-1-4799-0703-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/307280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact