Quadcopters are highly maneuverable and can provide an effective means for an agile dynamic positioning of sensors such as cameras. In this paper we propose a method for the self-positioning of a team of camera-equipped quadcopters (flying cameras) around a moving target. The self-positioning task is driven by the maximization of the monitored surface of the moving target based on a dynamic flight model combined with a collision avoidance algorithm. Each flying camera only knows the relative distance of neighboring flying cameras and its desired position with respect to the target. Given a team of up to 12 flying cameras, we show they can achieve a stable time-varying formation around a moving target without collisions
Self-positioning of a team of flying smart cameras
Poiesi, Fabio;
2015-01-01
Abstract
Quadcopters are highly maneuverable and can provide an effective means for an agile dynamic positioning of sensors such as cameras. In this paper we propose a method for the self-positioning of a team of camera-equipped quadcopters (flying cameras) around a moving target. The self-positioning task is driven by the maximization of the monitored surface of the moving target based on a dynamic flight model combined with a collision avoidance algorithm. Each flying camera only knows the relative distance of neighboring flying cameras and its desired position with respect to the target. Given a team of up to 12 flying cameras, we show they can achieve a stable time-varying formation around a moving target without collisionsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.