We introduce a novel dense shape matching method for deformable, three-dimensional shapes. Differently from most existing techniques, our approach is general in that it allows the shapes to undergo deformations that are far from being isometric. We do this in a supervised learning framework which makes use of training data as represented by a small set of example shapes. From this set, we learn an implicit representation of a shape descriptor capturing the variability of the deformations in the given class. The learning paradigm we choose for this task is a random forest classifier. With the additional help of a spatial regularizer, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping a low computational cost.
Applying Random Forests to the Problem of Dense Non-rigid Shape Correspondence
Rota Bulò, Samuel;
2016-01-01
Abstract
We introduce a novel dense shape matching method for deformable, three-dimensional shapes. Differently from most existing techniques, our approach is general in that it allows the shapes to undergo deformations that are far from being isometric. We do this in a supervised learning framework which makes use of training data as represented by a small set of example shapes. From this set, we learn an implicit representation of a shape descriptor capturing the variability of the deformations in the given class. The learning paradigm we choose for this task is a random forest classifier. With the additional help of a spatial regularizer, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping a low computational cost.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.