Automatic skyline detection from mountain pictures is an important task in many applications, such as web image retrieval, augmented reality and autonomous robot navigation. Recent works addressing the problem of Horizon Line Detection (HLD) demonstrated that learning-based boundary detection techniques are more accurate than traditional filtering methods. In this paper we introduce a novel approach for skyline detection, which adheres to a learning-based paradigm and exploits the representation power of deep architectures to improve the horizon line detection accuracy. Differently from previous works, we explore a novel deconvolutional architecture, which introduces intermediate levels of supervision to support the learning process. Our experiments, conducted on a publicly available dataset, confirm that the proposed method outperforms previous learning-based HLD techniques by reducing the number of spurious edge pixels.

A Deeply-Supervised Deconvolutional Network for Horizon Line Detection

Porzi, Lorenzo;Rota Bulò, Samuel;Ricci, Elisa
2016-01-01

Abstract

Automatic skyline detection from mountain pictures is an important task in many applications, such as web image retrieval, augmented reality and autonomous robot navigation. Recent works addressing the problem of Horizon Line Detection (HLD) demonstrated that learning-based boundary detection techniques are more accurate than traditional filtering methods. In this paper we introduce a novel approach for skyline detection, which adheres to a learning-based paradigm and exploits the representation power of deep architectures to improve the horizon line detection accuracy. Differently from previous works, we explore a novel deconvolutional architecture, which introduces intermediate levels of supervision to support the learning process. Our experiments, conducted on a publicly available dataset, confirm that the proposed method outperforms previous learning-based HLD techniques by reducing the number of spurious edge pixels.
2016
9781450336031
File in questo prodotto:
File Dimensione Formato  
ACMMM 2016.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/307133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact