We describe the design, the evaluation setup, and the results of the 2016 WMT shared task on cross-lingual pronoun prediction. This is a classification task in which participants are asked to provide predictions on what pronoun class label should replace a placeholder value in the target-language text, provided in lemmatised and PoS-tagged form. We provided four subtasks, for the English–French and English–German language pairs, in both directions. Eleven teams participated in the shared task; nine for the English–French subtask, five for French–English, nine for English–German, and six for German–English. Most of the submissions outperformed two strong language-model-based baseline systems, with systems using deep recurrent neural networks outperforming those using other architectures for most language pairs.

Findings of the 2016 WMT Shared Task on Cross-lingual Pronoun Prediction

Cettolo, Mauro;
2016-01-01

Abstract

We describe the design, the evaluation setup, and the results of the 2016 WMT shared task on cross-lingual pronoun prediction. This is a classification task in which participants are asked to provide predictions on what pronoun class label should replace a placeholder value in the target-language text, provided in lemmatised and PoS-tagged form. We provided four subtasks, for the English–French and English–German language pairs, in both directions. Eleven teams participated in the shared task; nine for the English–French subtask, five for French–English, nine for English–German, and six for German–English. Most of the submissions outperformed two strong language-model-based baseline systems, with systems using deep recurrent neural networks outperforming those using other architectures for most language pairs.
2016
978-1-945626-10-4
File in questo prodotto:
File Dimensione Formato  
W16-2345.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Documento in Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 208.67 kB
Formato Adobe PDF
208.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/306277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact