We introduce a technique for assessing and improving test oracles by reducing the incidence of both false positives and false negatives. We prove that our approach can always result in an increase in the mutual information between the actual and perfect oracles. Our technique combines test case generation to reveal false positives and mutation testing to reveal false negatives. We applied the decision support tool that implements our oracle improvement technique to five real-world subjects. The experimental results show that the fault detection rate of the oracles after improvement increases, on average, by 48.6% (86% over the implicit oracle). Three actual, exposed faults in the studied systems were subsequently confirmed and fixed by the developers.

Test oracle assessment and improvement

Jahangirova, Gunel;Tonella, Paolo
2016-01-01

Abstract

We introduce a technique for assessing and improving test oracles by reducing the incidence of both false positives and false negatives. We prove that our approach can always result in an increase in the mutual information between the actual and perfect oracles. Our technique combines test case generation to reveal false positives and mutation testing to reveal false negatives. We applied the decision support tool that implements our oracle improvement technique to five real-world subjects. The experimental results show that the fault detection rate of the oracles after improvement increases, on average, by 48.6% (86% over the implicit oracle). Three actual, exposed faults in the studied systems were subsequently confirmed and fixed by the developers.
2016
978-1-4503-4390-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/305721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact