Timed Failure Propagation Graphs (TFPGs) are used in the design of safety-critical systems as a way of modeling failure propagation, and to evaluate and implement diagnostic systems. TFPGs are a very rich formalism: they allow to model Boolean combinations of faults and events, also dependent on the operational modes of the system and quantitative delays between them. TFPGs are often produced manually, from a given dynamic system of greater complexity, as abstract representations of the system behavior under specific faulty conditions. In this paper we tackle two key difficulties in this process: first, how to make sure that no important behavior of the sys- tem is overlooked in the TFPG, and that no spurious, non-existent behavior is introduced; second, how to devise the correct values for the delays between events. We propose a model checking approach to automatically validate the completeness and tightness of a TFPG for a given infinite-state dynamic system, and a procedure for the automated synthesis of the delay parameters. The proposed approach is evaluated on a number of synthetic and industrial benchmarks.

Automated Verification and Tightening of Failure Propagation Models

Bittner, Benjamin;Bozzano, Marco;Cimatti, Alessandro;Zampedri, Gianni
2016-01-01

Abstract

Timed Failure Propagation Graphs (TFPGs) are used in the design of safety-critical systems as a way of modeling failure propagation, and to evaluate and implement diagnostic systems. TFPGs are a very rich formalism: they allow to model Boolean combinations of faults and events, also dependent on the operational modes of the system and quantitative delays between them. TFPGs are often produced manually, from a given dynamic system of greater complexity, as abstract representations of the system behavior under specific faulty conditions. In this paper we tackle two key difficulties in this process: first, how to make sure that no important behavior of the sys- tem is overlooked in the TFPG, and that no spurious, non-existent behavior is introduced; second, how to devise the correct values for the delays between events. We propose a model checking approach to automatically validate the completeness and tightness of a TFPG for a given infinite-state dynamic system, and a procedure for the automated synthesis of the delay parameters. The proposed approach is evaluated on a number of synthetic and industrial benchmarks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/303814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact