Perturbative corrections beyond leading-log accuracy to BFKL and BK equations, describing the rapidity evolution of QCD scattering amplitudes at high energy, exhibit strong convergence problems due to radiative corrections enhanced by large single and double transverse logs. We identify explicitly the physical origin of double transverse logs and resum them directly in coordinate space as appropriate for BK equation, in terms of an improved local-in-rapidity evolution kernel. Numerical results show the crucial role of double-logarithmic resummation for BK evolution, which is stabilized and slowed down by roughly a factor of two.

Resummation of Large Logarithms in the Rapidity Evolution of Color Dipoles

Iancu, Edmond;Soyez, Gregory Emmanuel Ghislain;Triantafyllopoulos, Dionysios
2015-01-01

Abstract

Perturbative corrections beyond leading-log accuracy to BFKL and BK equations, describing the rapidity evolution of QCD scattering amplitudes at high energy, exhibit strong convergence problems due to radiative corrections enhanced by large single and double transverse logs. We identify explicitly the physical origin of double transverse logs and resum them directly in coordinate space as appropriate for BK equation, in terms of an improved local-in-rapidity evolution kernel. Numerical results show the crucial role of double-logarithmic resummation for BK evolution, which is stabilized and slowed down by roughly a factor of two.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/303520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact