Most systems for opinion analysis focus on the classification of opinion polarities and rarely consider the task of identifying the different elements and relations forming an opinion frame. In this paper, we present RAID, a tool featuring a processing pipeline for the extraction of opinion frames from text with their opinion expressions, holders, targets and polarities. RAID leverages a lexical, syntactic and semantic analysis of text, using several NLP tools such as dependency parsing, semantic role labelling, named entity recognition and word sense disambiguation. In addition, linguistic resources such as SenticNet and the MPQA Subjectivity Lexicon are used both to locate opinions in the text and to classify their polarities according to a fuzzy model that combines the sentiment values of different opinion words. RAID was evaluated on three different datasets and is released as open source software under the GPLv3 license.

Supervised Opinion Frames Detection with RAID

Palmero Aprosio, Alessio;Corcoglioniti, Francesco;Dragoni, Mauro;Rospocher, Marco
2015

Abstract

Most systems for opinion analysis focus on the classification of opinion polarities and rarely consider the task of identifying the different elements and relations forming an opinion frame. In this paper, we present RAID, a tool featuring a processing pipeline for the extraction of opinion frames from text with their opinion expressions, holders, targets and polarities. RAID leverages a lexical, syntactic and semantic analysis of text, using several NLP tools such as dependency parsing, semantic role labelling, named entity recognition and word sense disambiguation. In addition, linguistic resources such as SenticNet and the MPQA Subjectivity Lexicon are used both to locate opinions in the text and to classify their polarities according to a fuzzy model that combines the sentiment values of different opinion words. RAID was evaluated on three different datasets and is released as open source software under the GPLv3 license.
File in questo prodotto:
File Dimensione Formato  
2015eswcclsa.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 218.14 kB
Formato Adobe PDF
218.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/301655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact