We present Deep Neural Decision Forests - a novel approach that unifies classification trees with the representation learning functionality known from deep convolutional networks, by training them in an end-to-end manner. To combine these two worlds, we introduce a stochastic and differentiable decision tree model, which steers the representation learning usually conducted in the initial layers of a (deep) convolutional network. Our model differs from conventional deep networks because a decision forest provides the final predictions and it differs from conventional decision forests since we propose a principled, joint and global optimization of split and leaf node parameters. We show experimental results on benchmark machine learning datasets like MNIST and ImageNet and find on-par or superior results when compared to state-of-the-art deep models. Most remarkably, we obtain Top5-Errors of only 7.84%/6.38% on ImageNet validation data when integrating our forests in a single-crop, single/seven model GoogLeNet architecture, respectively. Thus, even without any form of training data set augmentation we are improving on the 6.67% error obtained by the best GoogLeNet architecture (7 models, 144 crops).

Deep Neural Decision Forests

Rota Bulò, Samuel
2015-01-01

Abstract

We present Deep Neural Decision Forests - a novel approach that unifies classification trees with the representation learning functionality known from deep convolutional networks, by training them in an end-to-end manner. To combine these two worlds, we introduce a stochastic and differentiable decision tree model, which steers the representation learning usually conducted in the initial layers of a (deep) convolutional network. Our model differs from conventional deep networks because a decision forest provides the final predictions and it differs from conventional decision forests since we propose a principled, joint and global optimization of split and leaf node parameters. We show experimental results on benchmark machine learning datasets like MNIST and ImageNet and find on-par or superior results when compared to state-of-the-art deep models. Most remarkably, we obtain Top5-Errors of only 7.84%/6.38% on ImageNet validation data when integrating our forests in a single-crop, single/seven model GoogLeNet architecture, respectively. Thus, even without any form of training data set augmentation we are improving on the 6.67% error obtained by the best GoogLeNet architecture (7 models, 144 crops).
File in questo prodotto:
File Dimensione Formato  
ICCV15_DeepNDF_main.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 713.93 kB
Formato Adobe PDF
713.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/301518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact