In RF-MEMS packaging, next to the protection of movable structures, optimization of package electrical performance plays a very important role. In this work, a wafer-level packaging process has been investigated and optimized in order to minimize electrical parasitic effects. The RF-MEMS package concept used is based on a wafer-level bonding of a capping silicon substrate to an RF-MEMS wafer. The capping silicon substrate resistivity, substrate thickness and the geometry of through-substrate electrical interconnect vias have been optimized using finite-element electromagnetic simulations (Ansoft HFSS). Test structures for electrical characterization have been designed and after their fabrication, measurement results will be compared with simulations.
Parasitic Effects Reduction for Wafer-Level Packaging of RF-MEMS
Iannacci, Jacopo;
2006-01-01
Abstract
In RF-MEMS packaging, next to the protection of movable structures, optimization of package electrical performance plays a very important role. In this work, a wafer-level packaging process has been investigated and optimized in order to minimize electrical parasitic effects. The RF-MEMS package concept used is based on a wafer-level bonding of a capping silicon substrate to an RF-MEMS wafer. The capping silicon substrate resistivity, substrate thickness and the geometry of through-substrate electrical interconnect vias have been optimized using finite-element electromagnetic simulations (Ansoft HFSS). Test structures for electrical characterization have been designed and after their fabrication, measurement results will be compared with simulations.File | Dimensione | Formato | |
---|---|---|---|
2006_04_IANNACCI_DTIP.pdf
non disponibili
Descrizione: Proceedings
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
620.56 kB
Formato
Adobe PDF
|
620.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.