This work aims at improving speech recognition in noisy environments using a microphone array. The proposed approach is based on a preliminary generation of N-best hypotheses. The use of an adaptive maximum likelihood beamformer (the Limabeam algorithm), applied in parallel to each hypothesis, leads to an updated set of transcriptions, among which the maximally likely to clean speech models is selected. Results show that this method improves recognition accuracy over both Delay and Sum Beamforming and Unsupervised Limabeam especially at low SNRs. Results also show that it can recover the recognition errors made in the first recognition step.

N-best Parallel Maximum Likelihood Beamformers for Robust Speech Recognition

Omologo, Maurizio
2006-01-01

Abstract

This work aims at improving speech recognition in noisy environments using a microphone array. The proposed approach is based on a preliminary generation of N-best hypotheses. The use of an adaptive maximum likelihood beamformer (the Limabeam algorithm), applied in parallel to each hypothesis, leads to an updated set of transcriptions, among which the maximally likely to clean speech models is selected. Results show that this method improves recognition accuracy over both Delay and Sum Beamforming and Unsupervised Limabeam especially at low SNRs. Results also show that it can recover the recognition errors made in the first recognition step.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/29669
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact