In this work, we discuss a novel mechanical resonator design for the realization of vibration Energy Harvester (EH) capable to deliver power levels in the mW range. The device overcomes the typical constraint of frequency narrowband operability of standard cantilevered EHs, by exploiting a circular-shaped resonator with an increased number of mechanical Degrees Of Freedom (DOFs), leading to several resonant modes in the range of vibrations of interest (i.e. multi-modal wideband EH). The device, named Four-Leaf Clover (FLC), is simulated in Ansys WorbenchTM, showing a significant number of resonant modes up to vibrations of around 2 kHz (modal eigenfrequencies analysis), and exhibiting levels of converted power up to a few mW at resonance (harmonic coupled-field analysis). The sole FLC mechanical structure is realized by micro-milling an Aluminum foil, while a cantilevered test structure also including PolyVinyliDene Fluoride (PVDF) film sheet is assembled in order to collect first experimental feedback on generated power levels. The first lab based tests show peak-to-peak voltages of several Volts when the cantilever is stimulated with a mechanical pulse. Further developments of this work will comprise the assembly of an FLC demonstrator with PVDF pads, and its experimental testing in order to validate the simulated results.
From MEMS to Macro-World: A Micro-Milling Machined Wideband Vibration Piezoelectric Energy Harvester
Iannacci, Jacopo;Sordo, Guido
2015-01-01
Abstract
In this work, we discuss a novel mechanical resonator design for the realization of vibration Energy Harvester (EH) capable to deliver power levels in the mW range. The device overcomes the typical constraint of frequency narrowband operability of standard cantilevered EHs, by exploiting a circular-shaped resonator with an increased number of mechanical Degrees Of Freedom (DOFs), leading to several resonant modes in the range of vibrations of interest (i.e. multi-modal wideband EH). The device, named Four-Leaf Clover (FLC), is simulated in Ansys WorbenchTM, showing a significant number of resonant modes up to vibrations of around 2 kHz (modal eigenfrequencies analysis), and exhibiting levels of converted power up to a few mW at resonance (harmonic coupled-field analysis). The sole FLC mechanical structure is realized by micro-milling an Aluminum foil, while a cantilevered test structure also including PolyVinyliDene Fluoride (PVDF) film sheet is assembled in order to collect first experimental feedback on generated power levels. The first lab based tests show peak-to-peak voltages of several Volts when the cantilever is stimulated with a mechanical pulse. Further developments of this work will comprise the assembly of an FLC demonstrator with PVDF pads, and its experimental testing in order to validate the simulated results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.