In this paper we propose a novel data–driven kernel automatically determined by the training examples. Basically, it is built by combining a finite set of linearly independent functions, namely generalized terminated ramp functions, each depending on a pair of training data. When working in the Tikhonov regularization framework, the unique free parameter to be optimized is the regularizer, representing a trade-off between empirical error and smoothness of the solution

Terminated Ramp: a data-driven kernel

Merler, Stefano;Jurman, Giuseppe
2005-01-01

Abstract

In this paper we propose a novel data–driven kernel automatically determined by the training examples. Basically, it is built by combining a finite set of linearly independent functions, namely generalized terminated ramp functions, each depending on a pair of training data. When working in the Tikhonov regularization framework, the unique free parameter to be optimized is the regularizer, representing a trade-off between empirical error and smoothness of the solution
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/2655
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact