Typically, case-based recommender systems recommend single items to the on-line customer. In this paper we introduce the idea of recommending a user-defined collection of items where the user has implicitly encoded the relationships between the items. Automated collaborative filtering (ACF), a so-called "contentless" technique, has been widely used as a recommendation strategy for music items. However, its reliance on a global model of the user’s interests makes it unsuited to catering for the user’s local interests. We consider the context-sensitive task of building a compilation, a user-defined collection of music tracks. In our analysis, a collection is a case that captures a specific short-term information/music need. In an offline evaluation, we demonstrate how a case-completion strategy that uses short-term representations is significantly more effective than the ACF technique. We then consider the problem of recommending a compilation according to the user’s most recent listening preferences. Using a novel on-line evaluation where two algorithms compete for the user’s attention, we demonstrate how a knowledge-light case-based reasoning strategy successfully addresses this problem

Re-using Implicit Knowledge in Short-term Information Profiles for Context-sensitive Tasks

Hayes, Conor Michael;Avesani, Paolo;
2005-01-01

Abstract

Typically, case-based recommender systems recommend single items to the on-line customer. In this paper we introduce the idea of recommending a user-defined collection of items where the user has implicitly encoded the relationships between the items. Automated collaborative filtering (ACF), a so-called "contentless" technique, has been widely used as a recommendation strategy for music items. However, its reliance on a global model of the user’s interests makes it unsuited to catering for the user’s local interests. We consider the context-sensitive task of building a compilation, a user-defined collection of music tracks. In our analysis, a collection is a case that captures a specific short-term information/music need. In an offline evaluation, we demonstrate how a case-completion strategy that uses short-term representations is significantly more effective than the ACF technique. We then consider the problem of recommending a compilation according to the user’s most recent listening preferences. Using a novel on-line evaluation where two algorithms compete for the user’s attention, we demonstrate how a knowledge-light case-based reasoning strategy successfully addresses this problem
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/2615
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact