Classification of vehicles plays an important role in a traffic monitoring system. In this paper we present a feature-based classifier, which can distinguish bicycles from motorcycles in real world traffic scenes. Basically, the algorithm extracts some visual features focusing on the region corresponding to the wheels of vehicle. It splits the problem into two sub-cases depending on the computed motion direction. The classification is performed by means of a non-linear Support Vector Machine. Tests lead to a successful classification rate of 93% on video sequences taken from different road junctions in an urban environment

Vision-based bicycle/motorcycle classification with Support Vector Machines

Messelodi, Stefano;Modena, Carla Maria
2004

Abstract

Classification of vehicles plays an important role in a traffic monitoring system. In this paper we present a feature-based classifier, which can distinguish bicycles from motorcycles in real world traffic scenes. Basically, the algorithm extracts some visual features focusing on the region corresponding to the wheels of vehicle. It splits the problem into two sub-cases depending on the computed motion direction. The classification is performed by means of a non-linear Support Vector Machine. Tests lead to a successful classification rate of 93% on video sequences taken from different road junctions in an urban environment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/2572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact