It is well proven that the functional electrophysiological behavior of in-vitro neuronal networks is influenced by the structural connectivity. Thus, the automatic extraction of the topology in large assemblies of interconnected neurons can be a valuable tool for investigating the basic mechanisms underlying high-level cognitive functions. In this paper we propose a method for estimating the structural connectivity of neuronal networks from multimodal datasets combining high-resolution Multi-Electrode Arrays (MEA) and fluorescence microscopy. Probabilistic directional features are used in a graph heat kernel framework to identify the structural connectivity of the neuronal network. Electrode connectivity maps are computed as weighted graphs in which the edge weights represent the strength of the structural connection.

Neuronal network structural connectivity estimation by probabilistic features and graph heat kernels2013 IEEE 10th International Symposium on Biomedical Imaging

Sona, Diego;
2013-01-01

Abstract

It is well proven that the functional electrophysiological behavior of in-vitro neuronal networks is influenced by the structural connectivity. Thus, the automatic extraction of the topology in large assemblies of interconnected neurons can be a valuable tool for investigating the basic mechanisms underlying high-level cognitive functions. In this paper we propose a method for estimating the structural connectivity of neuronal networks from multimodal datasets combining high-resolution Multi-Electrode Arrays (MEA) and fluorescence microscopy. Probabilistic directional features are used in a graph heat kernel framework to identify the structural connectivity of the neuronal network. Electrode connectivity maps are computed as weighted graphs in which the edge weights represent the strength of the structural connection.
2013
9781467364546
9781467364553
9781467364560
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/251434
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact