Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
In this paper we present a novel approach to group-wise multi-modal community detection, i.e. identification of coherent sub-graphs across multiple subjects with strong correlation across modalities. This approach is based on joint diagonalization of two or more graph Laplacians aiming at finding a common eigenspace across individuals, over which spectral clustering in fewer dimension is then applied. The method allows to identify common sub-networks across different graphs. We applied our method on 40 multi-modal structural and functional healthy subjects, finding well known sub-networks described in literature. Our experiments revealed that detected multi-modal brain sub-networks improve the consistency of group-wise unimodal community detection.
Joint laplacian diagonalization for multi-modal brain community detection
In this paper we present a novel approach to group-wise multi-modal community detection, i.e. identification of coherent sub-graphs across multiple subjects with strong correlation across modalities. This approach is based on joint diagonalization of two or more graph Laplacians aiming at finding a common eigenspace across individuals, over which spectral clustering in fewer dimension is then applied. The method allows to identify common sub-networks across different graphs. We applied our method on 40 multi-modal structural and functional healthy subjects, finding well known sub-networks described in literature. Our experiments revealed that detected multi-modal brain sub-networks improve the consistency of group-wise unimodal community detection.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/251228
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
social impact
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.