There is a growing conviction that the understanding of the brain function can come through a deeper knowledge of the network connectivity between different brain areas. Resting state Functional Magnetic Resonance Imaging (rs-fMRI) is becoming one of the most important imaging modality widely used to understand network functionality. However, due to the variability at subject scale, mapping common networks across individuals is by now a real challenge. In this work we present a novel approach to group-wise community detection, i.e. identification of functional coherent sub-graphs across multiple subjects. This approach is based on a joint diagonalization of two or more graph Laplacians, aiming at finding a common eigenspace across individuals, over which clustering in fewer dimension can then be applied. This allows to identify common sub-networks across different graphs. We applied our method to rs-fMRI dataset of mouse brain finding most important sub-networks recently described in literature.

Group-Wise Functional Community Detection through Joint Laplacian Diagonalization

Sona, Diego
2014-01-01

Abstract

There is a growing conviction that the understanding of the brain function can come through a deeper knowledge of the network connectivity between different brain areas. Resting state Functional Magnetic Resonance Imaging (rs-fMRI) is becoming one of the most important imaging modality widely used to understand network functionality. However, due to the variability at subject scale, mapping common networks across individuals is by now a real challenge. In this work we present a novel approach to group-wise community detection, i.e. identification of functional coherent sub-graphs across multiple subjects. This approach is based on a joint diagonalization of two or more graph Laplacians, aiming at finding a common eigenspace across individuals, over which clustering in fewer dimension can then be applied. This allows to identify common sub-networks across different graphs. We applied our method to rs-fMRI dataset of mouse brain finding most important sub-networks recently described in literature.
2014
9783319104690
9783319104706
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/251022
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact