In this paper we propose a cascading framework for optimizing online learning in machine translation for computer assisted translation scenario. With the use of online learning, one introduces several hyper parameters associated with the learning algorithm. Number of iterations of online learning can affect the quality of translation as well. We discuss these issues and propose a few approaches that can be used to optimize the hyper parameters and also to find the number of iterations required for online learning. We experimentally show that using optimal number of iterations in online learning proves to be useful and we get consistent improvement against baseline results.

Optimized MT Online Learning in Computer Assisted Translation

Mathur, Prashant;Cettolo, Mauro
2014-01-01

Abstract

In this paper we propose a cascading framework for optimizing online learning in machine translation for computer assisted translation scenario. With the use of online learning, one introduces several hyper parameters associated with the learning algorithm. Number of iterations of online learning can affect the quality of translation as well. We discuss these issues and propose a few approaches that can be used to optimize the hyper parameters and also to find the number of iterations required for online learning. We experimentally show that using optimal number of iterations in online learning proves to be useful and we get consistent improvement against baseline results.
File in questo prodotto:
File Dimensione Formato  
prashant_cettolo_IAMT2014.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 226.59 kB
Formato Adobe PDF
226.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/245223
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact