In this paper we investigate the problem of adapting a machine translation system to the feedback provided by multiple post-editors. It is well know that translators might have very different post-editing styles and that this variability hinders the application of online learning methods, which indeed assume a homogeneous source of adaptation data. We hence propose multi-task learning to leverage bias information from each single post-editors in order to constrain the evolution of the SMT system. A new framework for significance testing with sentence level metrics is described which shows that Multi-Task learning approaches outperforms existing online learning approaches, with significant gains of 1.24 and 1.88 TER score over a strong online adaptive baseline, on a test set of post-edits produced by four translators texts and on a popular benchmark with multiple references, respectively.

Online Multi-User Adaptive Statistical Machine Translation

Mathur, Prashant;Cettolo, Mauro;Federico, Marcello;
2014

Abstract

In this paper we investigate the problem of adapting a machine translation system to the feedback provided by multiple post-editors. It is well know that translators might have very different post-editing styles and that this variability hinders the application of online learning methods, which indeed assume a homogeneous source of adaptation data. We hence propose multi-task learning to leverage bias information from each single post-editors in order to constrain the evolution of the SMT system. A new framework for significance testing with sentence level metrics is described which shows that Multi-Task learning approaches outperforms existing online learning approaches, with significant gains of 1.24 and 1.88 TER score over a strong online adaptive baseline, on a test set of post-edits produced by four translators texts and on a popular benchmark with multiple references, respectively.
File in questo prodotto:
File Dimensione Formato  
prashantEtAl_AMTA2014.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 259.87 kB
Formato Adobe PDF
259.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/245222
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact