We address the problems of combining satisfiability procedures and consider two combination scenarios: (i) the combination within the class of rewriting-based satisfiability procedures and (ii) the Nelson-Oppen combination of rewriting-based satisfiability procedures and arbitrary satisfiability procedures. In each scenario, we use meta-saturation, which schematizes saturation of the set containing the axioms of a given theory and an arbitrary set of ground literals, to syntactically decide sufficient conditions for the combinability of rewriting-based satisfiability procedures. For (i), we give a sufficient condition for the modular termination of meta-saturation. When meta-saturation for the union of theories halts, it yields a rewriting-based satisfiability procedure for the union. For (ii), we use meta-saturation to prove the stable infiniteness of the component theories and deduction completeness of their rewriting-based satisfiability procedures. These properties are important to establish the correctness of the Nelson-Oppen combination method and to obtain an efficient implementation.

Automatic Combinability of Rewriting-Based Satisfiability Procedures

Ranise, Silvio;
2006

Abstract

We address the problems of combining satisfiability procedures and consider two combination scenarios: (i) the combination within the class of rewriting-based satisfiability procedures and (ii) the Nelson-Oppen combination of rewriting-based satisfiability procedures and arbitrary satisfiability procedures. In each scenario, we use meta-saturation, which schematizes saturation of the set containing the axioms of a given theory and an arbitrary set of ground literals, to syntactically decide sufficient conditions for the combinability of rewriting-based satisfiability procedures. For (i), we give a sufficient condition for the modular termination of meta-saturation. When meta-saturation for the union of theories halts, it yields a rewriting-based satisfiability procedure for the union. For (ii), we use meta-saturation to prove the stable infiniteness of the component theories and deduction completeness of their rewriting-based satisfiability procedures. These properties are important to establish the correctness of the Nelson-Oppen combination method and to obtain an efficient implementation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/22078
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact