In this paper we present KNOWA, an English/Italian word aligner, developed at ITC-irst, which relies mostly on information contained in bilingual dictionaries. The performances of KNOWA are compared with those of GIZA++, a state of the art statistics-based alignment algorithm. The two algorithms are evaluated on the EuroCor and MultiSemCor tasks, that is on two English/Italian publicly available parallel corpora. The results of the evaluation show that, given the nature and the size of the available English-Italian parallel corpora, a language-resource-based word aligner such as KNOWA can outperform a fully statistics-based algorithm such as GIZA++

Knowledge Intensive Word Alignment with KNOWA

Pianta, Emanuele;Bentivogli, Luisa
2004

Abstract

In this paper we present KNOWA, an English/Italian word aligner, developed at ITC-irst, which relies mostly on information contained in bilingual dictionaries. The performances of KNOWA are compared with those of GIZA++, a state of the art statistics-based alignment algorithm. The two algorithms are evaluated on the EuroCor and MultiSemCor tasks, that is on two English/Italian publicly available parallel corpora. The results of the evaluation show that, given the nature and the size of the available English-Italian parallel corpora, a language-resource-based word aligner such as KNOWA can outperform a fully statistics-based algorithm such as GIZA++
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/2162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact