Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Over the last years, many different methods have
been proposed for indoor localization and navigation services
based on Radio frequency (RF) technology and Radio Signal
Strength Indicator (RSSI). The accuracy achieved with such
systems is typically low, mainly due to the variability of RSSI
values, unsuitable for classic localization methods (e.g.
triangulation). In this paper, we propose a novel approach based
on multiple neural networks. We demonstrate with experimental
results that by training and then activating different neural
networks, tailored on the user orientation, high definition
accuracy is achievable, allowing indoor navigation with a cost
effective Bluetooth (BT) architecture.
Bluetooth indoor localization with multiple neural networks
Over the last years, many different methods have
been proposed for indoor localization and navigation services
based on Radio frequency (RF) technology and Radio Signal
Strength Indicator (RSSI). The accuracy achieved with such
systems is typically low, mainly due to the variability of RSSI
values, unsuitable for classic localization methods (e.g.
triangulation). In this paper, we propose a novel approach based
on multiple neural networks. We demonstrate with experimental
results that by training and then activating different neural
networks, tailored on the user orientation, high definition
accuracy is achievable, allowing indoor navigation with a cost
effective Bluetooth (BT) architecture.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/215927
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
social impact
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.