Hierarchical categorization of documents is a task receiving growing interest due to the widespread proliferation of topic hierarchies for text documents. The worst problem of hierarchical supervised classiers is their high demand in terms of labeled examples, whose amount is related to the number of topics in the taxonomy. Hence, bootstrapping a huge hierarchy with a proper set of labeled examples is a critical issue. In this paper, we propose some solutions for the bootstrapping problem, implicitly or explicitly using a taxonomy definition: a baseline approach where documents are classified according to class labels, and two clustering approaches, where training is constrained by the a-priori knowledge of the taxonomy structure, both at terminological and topological level. In particular, we propose the TaxSOM model, that clusters a set of documents in a predefined hierarchy of classes, directly exploiting the knowledge of both their topological organization and their lexical description. Experimental evaluation was performed on a set of taxonomies taken from the Google Web directory

Clustering Documents in a Web Directory

Adami, Giordano;Avesani, Paolo;Sona, Diego
2003-01-01

Abstract

Hierarchical categorization of documents is a task receiving growing interest due to the widespread proliferation of topic hierarchies for text documents. The worst problem of hierarchical supervised classiers is their high demand in terms of labeled examples, whose amount is related to the number of topics in the taxonomy. Hence, bootstrapping a huge hierarchy with a proper set of labeled examples is a critical issue. In this paper, we propose some solutions for the bootstrapping problem, implicitly or explicitly using a taxonomy definition: a baseline approach where documents are classified according to class labels, and two clustering approaches, where training is constrained by the a-priori knowledge of the taxonomy structure, both at terminological and topological level. In particular, we propose the TaxSOM model, that clusters a set of documents in a predefined hierarchy of classes, directly exploiting the knowledge of both their topological organization and their lexical description. Experimental evaluation was performed on a set of taxonomies taken from the Google Web directory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/2011
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact