This paper presents characterization of affect (valence and arousal) using the Magnetoencephalogram (MEG) brain signal. We attempt single-trial classification of movie and music videos with MEG responses extracted from seven participants. The main findings of this study are that: (i) the MEG signal effectively encodes affective viewer responses, (ii) clip arousal is better predicted than valence employing MEG and (iii) prediction performance is better for movie clips as compared to music videos.

Decoding Affect in Videos Employing the MEG Brain Signal

Kia, Seyed Mostafa;Avesani, Paolo;
2013

Abstract

This paper presents characterization of affect (valence and arousal) using the Magnetoencephalogram (MEG) brain signal. We attempt single-trial classification of movie and music videos with MEG responses extracted from seven participants. The main findings of this study are that: (i) the MEG signal effectively encodes affective viewer responses, (ii) clip arousal is better predicted than valence employing MEG and (iii) prediction performance is better for movie clips as compared to music videos.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/199011
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact