Combination of multiple classifiers has been shown to increase classification accuracy in many application domains. Besides, the use of cluster analysis techniques in supervised classification tasks has shown that they can enhance the quality of the classification results. This is based on the fact that clusters can provide supplementary constraints that may improve the generalization capability of the classifiers. In this paper we introduce a new classifier combination scheme which is based on the Decision Templates Combiner. The proposed scheme uses the same concept of representing the classifiers decision as a vector in an intermediate feature space and builds more representatives decision templates by using clustering ensembles. An experimental evaluation was carried out on several synthetic and real datasets. The results show that the proposed scheme increases the classification accuracy over the Decision Templates Combiner, and other classical classifier combinations methods.

A New Classifier Combination Scheme Using Clustering Ensemble

Vega Pons, Sandro;
2012-01-01

Abstract

Combination of multiple classifiers has been shown to increase classification accuracy in many application domains. Besides, the use of cluster analysis techniques in supervised classification tasks has shown that they can enhance the quality of the classification results. This is based on the fact that clusters can provide supplementary constraints that may improve the generalization capability of the classifiers. In this paper we introduce a new classifier combination scheme which is based on the Decision Templates Combiner. The proposed scheme uses the same concept of representing the classifiers decision as a vector in an intermediate feature space and builds more representatives decision templates by using clustering ensembles. An experimental evaluation was carried out on several synthetic and real datasets. The results show that the proposed scheme increases the classification accuracy over the Decision Templates Combiner, and other classical classifier combinations methods.
2012
9783642332746
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/193210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact