Error-correcting output codes (ECOCs) represent classes with a set of output bits, where each bit encodes a binary classification task corresponding to a unique partition of the classes. Algorithms that use ECOCs learn the function corresponding to each bit, and combine them to generate class predictions. ECOCs can reduce both variance and bias errors for multiclass classification tasks when the errors made at the output bits are not correlated. They work well with algorithms that eagerly induce global classifiers (e.g., C4.5) but do not assist simple local classifiers (e.g., nearest neighbor), which yield correlated predictions across the output bits. We show that the output bit predictions of local learners can be decorrelated by selecting different features for each bit. We present promising empirical results for this combination of ECOCs, nearest neighbor, and feature selection

Error-Correcting Output Codes for Local Learners

Ricci, Francesco;
1998-01-01

Abstract

Error-correcting output codes (ECOCs) represent classes with a set of output bits, where each bit encodes a binary classification task corresponding to a unique partition of the classes. Algorithms that use ECOCs learn the function corresponding to each bit, and combine them to generate class predictions. ECOCs can reduce both variance and bias errors for multiclass classification tasks when the errors made at the output bits are not correlated. They work well with algorithms that eagerly induce global classifiers (e.g., C4.5) but do not assist simple local classifiers (e.g., nearest neighbor), which yield correlated predictions across the output bits. We show that the output bit predictions of local learners can be decorrelated by selecting different features for each bit. We present promising empirical results for this combination of ECOCs, nearest neighbor, and feature selection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/1507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact