We applied the novel bootstrap 632+ rule to choose tree-based classifiers trained for modelling the risk of parasite presence in the host population of ungulates. The method is designed to control overfitting: compact classification trees (CART) are selected using a nonlinear combination of the resubstitution error and the standard bootsrap error estimate. Model selection based on the 632+ rule offers a gain over cross-validation for CART models. The tree classifier selected by the new rule for this application favourably compared with standard multivariate GLIM models

An Application of the Bootstrap 632+ Rule to Ecological Data

Furlanello, Cesare;Merler, Stefano;Rizzoli, Annamaria
1998-01-01

Abstract

We applied the novel bootstrap 632+ rule to choose tree-based classifiers trained for modelling the risk of parasite presence in the host population of ungulates. The method is designed to control overfitting: compact classification trees (CART) are selected using a nonlinear combination of the resubstitution error and the standard bootsrap error estimate. Model selection based on the 632+ rule offers a gain over cross-validation for CART models. The tree classifier selected by the new rule for this application favourably compared with standard multivariate GLIM models
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/1370
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact