This paper introduces a new local asymmetric weighting scheme for the nearest neighbor classification algorithm. It is shown both with theoretical arguments and computer experiments that good compression rates can be achieved outperforming the accuracy of the standard nearest neighbor classification algorithm and obtaining almost the same accuracy as the k-NN algorithm with k optimised in each data set. The improvement in time performance is proportional to the compression rate and in general it depends on the data set. The comparison of the classification accuracy of the proposed algorithm with a local symmetrically weighted metric and with a global metric strongly shows that the proposed scheme is to be preferred

Nearest Neighbor Classifaction with a Local Asymmetrically Weighted Metric

Ricci, Francesco;Avesani, Paolo
1996-01-01

Abstract

This paper introduces a new local asymmetric weighting scheme for the nearest neighbor classification algorithm. It is shown both with theoretical arguments and computer experiments that good compression rates can be achieved outperforming the accuracy of the standard nearest neighbor classification algorithm and obtaining almost the same accuracy as the k-NN algorithm with k optimised in each data set. The improvement in time performance is proportional to the compression rate and in general it depends on the data set. The comparison of the classification accuracy of the proposed algorithm with a local symmetrically weighted metric and with a global metric strongly shows that the proposed scheme is to be preferred
1996
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/1196
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact