In this paper, we address statistical ma- chine translation of public conference talks. Modeling the style of this genre can be very challenging given the shortage of available in-domain training data. We investigate the use of a hybrid LM, where infrequent words are mapped into classes. Hybrid LMs are used to complement word-based LMs with statistics about the language style of the talks. Extensive experiments comparing different settings of the hybrid LM are re- ported on publicly available benchmarks based on TED talks, from Arabic to English and from English to French. The proposed models show to better exploit in-domain data than conventional word-based LMs for the target language modeling component of a phrase-based statistical machine transla- tion system.
Cutting the Long Tail: Hybrid Language Models for Translation Style Adaptation
Bisazza, Arianna;Federico, Marcello
2012-01-01
Abstract
In this paper, we address statistical ma- chine translation of public conference talks. Modeling the style of this genre can be very challenging given the shortage of available in-domain training data. We investigate the use of a hybrid LM, where infrequent words are mapped into classes. Hybrid LMs are used to complement word-based LMs with statistics about the language style of the talks. Extensive experiments comparing different settings of the hybrid LM are re- ported on publicly available benchmarks based on TED talks, from Arabic to English and from English to French. The proposed models show to better exploit in-domain data than conventional word-based LMs for the target language modeling component of a phrase-based statistical machine transla- tion system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.