In this paper, we introduce a novel parallel corpus of music and lyrics, annotated with emotions at line level. We first describe the corpus, consisting of 100 popular songs, each of them including a music component, provided in the MIDI format, as well as a lyrics component, made available as raw text. We then describe our work on enhancing this corpus with emotion annotations using crowdsourcing. We also present some initial experiments on emotion classification using the music and the lyrics representations of the songs, which lead to encouraging results, thus demonstrating the promise of using joint music-lyric models for song processing.

A parallel corpus of music and lyrics annotated with emotions

Strapparava, Carlo;Battocchi, Alberto
2012-01-01

Abstract

In this paper, we introduce a novel parallel corpus of music and lyrics, annotated with emotions at line level. We first describe the corpus, consisting of 100 popular songs, each of them including a music component, provided in the MIDI format, as well as a lyrics component, made available as raw text. We then describe our work on enhancing this corpus with emotion annotations using crowdsourcing. We also present some initial experiments on emotion classification using the music and the lyrics representations of the songs, which lead to encouraging results, thus demonstrating the promise of using joint music-lyric models for song processing.
978-2-9517408-7-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/103820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact