This paper presents a novel method for underdetermined acoustic source separation of convolutive mixtures. Multiple complex-valued Independent Component Analysis adaptations jointly estimate the mixing matrix and the temporal activities of multiple sources in each frequency. A structure based on a recursive temporal weighting of the gradient enforces each ICA adaptation to estimate mixing parameters related to sources having a disjoint temporal activity. Permutation problem is reduced imposing a multiresolution spatio-temporal correlation of the narrow-band components. Finally, aligned mixing parameters are used to recover the sources through L0 -norm minimization and a post-processing based on a single channel Wiener filtering. Promising results obtained over a public dataset show that the proposed method is an effective solution to the underdetermined source separation problem.

Convolutive underdetermined source separation through weighted interleaved ICA and spatio-temporal source correlation

Nesta, Francesco;Omologo, Maurizio
2012

Abstract

This paper presents a novel method for underdetermined acoustic source separation of convolutive mixtures. Multiple complex-valued Independent Component Analysis adaptations jointly estimate the mixing matrix and the temporal activities of multiple sources in each frequency. A structure based on a recursive temporal weighting of the gradient enforces each ICA adaptation to estimate mixing parameters related to sources having a disjoint temporal activity. Permutation problem is reduced imposing a multiresolution spatio-temporal correlation of the narrow-band components. Finally, aligned mixing parameters are used to recover the sources through L0 -norm minimization and a post-processing based on a single channel Wiener filtering. Promising results obtained over a public dataset show that the proposed method is an effective solution to the underdetermined source separation problem.
9783642285509
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/103801
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact