Nowadays, different chemical and physical transfection techniques are used to delivery biomolecules of interest (e.g. DNA, RNA, proteins) into cells. Among the physical methods, electroporation generates transient pores in the plasma membrane by applying electrical pulses to suspended cells. One of its main limitations is the lack of spatio-temporal control over the process: it does not allow to select single cells (desirable requirement especially in highly heterogeneous tissues), and to monitor the transfection results in real-time. To circumvent these disadvantages, alternative microscale approaches are increasingly required. This work presents an integrated platform consisting of a gold microelectrode array (MEA) for singlesite electroporation and fluidic channels for controlled delivery of bio-chemical entities . In order to improve the efficiency of electroporation, the gold electrodes were coated with a thin film of nanostructured of Titanium Dioxide .

Functionalized microelectrodes arrays with integrated microfluidic channels for single-site multiple

Collini, Cristian;Morganti, Elisa;Odorizzi, Lara;Ress, Cristina;Lorenzelli, Leandro;Coppedè, Nicola;Iannotta, Salvatore;
2010-01-01

Abstract

Nowadays, different chemical and physical transfection techniques are used to delivery biomolecules of interest (e.g. DNA, RNA, proteins) into cells. Among the physical methods, electroporation generates transient pores in the plasma membrane by applying electrical pulses to suspended cells. One of its main limitations is the lack of spatio-temporal control over the process: it does not allow to select single cells (desirable requirement especially in highly heterogeneous tissues), and to monitor the transfection results in real-time. To circumvent these disadvantages, alternative microscale approaches are increasingly required. This work presents an integrated platform consisting of a gold microelectrode array (MEA) for singlesite electroporation and fluidic channels for controlled delivery of bio-chemical entities . In order to improve the efficiency of electroporation, the gold electrodes were coated with a thin film of nanostructured of Titanium Dioxide .
File in questo prodotto:
File Dimensione Formato  
GNB Celtic.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 139.09 kB
Formato Adobe PDF
139.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/10037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact