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Abstract: Cryptojacking is a type of computer piracy in which a hacker uses a victim’s computer
resources, without their knowledge or consent, to mine for cryptocurrency. This is made possible
by new memory-based cryptomining techniques and the growth of new web technologies such
as WebAssembly, allowing mining to occur within a browser. Most of the research in the field
of cryptojacking has focused on detection methods rather than prevention methods. Some of the
detection methods proposed in the literature include using static and dynamic features of in-browser
cryptojacking malware, along with machine learning algorithms such as Support Vector Machine
(SVM), Random Forest (RF), and others. However, these methods can be effective in detecting
known cryptojacking malware, but they may not be able to detect new or unknown variants. The
existing prevention methods are shown to be effective only against web-assembly (WASM)-based
cryptojacking malware and cannot handle mining service-providing scripts that use non-WASM
modules. This paper proposes a novel hybrid approach for detecting and preventing web-based
cryptojacking. The proposed approach performs the real-time detection and prevention of in-browser
cryptojacking malware, using the blacklisting technique and statistical code analysis to identify
unique features of non-WASM cryptojacking malware. The experimental results show positive
performances in the ease of use and efficiency, with the detection accuracy improved from 97% to
99.6%. Moreover, the time required to prevent already known malware in real time can be decreased
by 99.8%.

Keywords: in-browser cryptojacking; cryptomining; Monero; cryptojacking detection; cryptojacking
prevention; WASM

1. Introduction

With the advancement of technology, humans have started finding new secure ways to
transfer money online, leading them to the development of blockchain. The first blockchain
application, Bitcoin, was created in 2009 by Satoshi Nakamoto [1]. Since then, many other
cryptocurrencies have been developed [2], with over 2000 existing today [3]. Cryptocur-
rency eliminates the need for centralized management and maintains user privacy through
decentralized systems and consensus algorithms such as “Proof of Work (PoW)”, which re-
quires solving a complex mathematical task to verify transactions. This process is known as
cryptomining or simply mining, and the person who solves the puzzle is called a miner [4].

Mining normally requires high computational resources and hence relies on more
advanced equipment (requiring expensive hardware) to help earn mining awards [5]. Thus,
hackers have employed a technique called cryptojacking [6] to earn mining rewards without
spending money on buying such advanced machines. This malware is used to utilize the
resources of other people’s computers, mobiles, and devices without their consent, allowing
the hacker to mine cryptocurrency without the victims’ permission, saving the expense of
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buying advanced computational machines. Cryptojacking malware attacks became more
prevalent after 2017 and have continued to emerge since then [7].

In-browser cryptojacking has recently gained exponential growth and thus has at-
tracted security researchers’ attention, from both industry and academia, to find efficient ap-
proaches to detect this malware [8]. In addition to the detection work by Darabian et al. [9],
some researchers discuss the prevention methodology to mitigate the cryptojacking attack.
The study by Yulianto et al. [10] detects the malicious script of cryptojacking by measuring
the CPU usage and notifying the user in case of some malicious script in the background of
the website. The method presented by Razali and Shariff [11] kills the malicious process af-
ter detecting it by comparing it with the blacklist items. Another approach by Bian et al. [12]
suspends the execution of the script if detected as malicious. The existing approaches are
effective only in detecting in-browser cryptojacking if it has web-assembly (WASM) code
instructions [13]. Hence, the malware developed in other languages, such as JavaScript and
advanced obfuscation techniques, are not detected. A solution to this problem may include
checking the website against a blacklist of already identified web-based cryptojacking
malware.

The proposed approach in this paper is a novel hybrid method for in-browser malware
detection and prevention. It combines dynamic and static malware analysis techniques by
first comparing the URL of a website visited by a user to an existing blacklist of in-browser
cryptojacking malware URLs. The website is blocked immediately if the URL is present on
the blacklist. Otherwise, it undergoes a static code analysis, and if found to be malicious, it
is blocked. If not, a dynamic analysis is performed. The approach includes an interpreting
mode to identify malicious code blocks, a detection mode to measure the CPU time of
the code block, and a defense mode to suspend it if malicious. The proposed solution
allows for flexible suspension intervals for malicious code blocks based on the confidence
level. The approach has an overall accuracy of 99.6% on a dataset of 1000 samples and a
low-performance overhead, with an increase of only 7% compared to a dynamic analysis
alone. It is suitable to be run in real-time systems.

The main contributions of this work are the following:

• The proposal of a novel hybrid approach—combining blacklisting detection (as the
1st), signature-based detection (as the 2nd), and a dynamic approach (as the 3rd)
defensive layer.

• The advancement of the state of the art in terms of the detection accuracy (from 97%
to 99.6%).

• An extension of the malware protection to non-WASM cryptojacking.

The rest of this paper is organized as follows. Section 2 presents the literature review
and the problem statement. A brief description of the proposed approach is provided in
Section 3. Section 4 provides the implementation details. The experimental evaluation and
discussion of results are provided in Section 5, and Section 6 concludes this paper.

2. Literature Review

In this section, we survey the most relevant papers. Tekiner et al. [14] reviewed
cryptojacking attacks by analyzing 26,000 cryptojacking samples collected from 45 major
attacks created from two unique datasets (VirusTotal and PublicWWW). They classified
cryptojacking attacks into two main classes: in-browser and host based. Additionally, they
discussed the main sources of such attacks, the mechanism, and the most common platform
to launch such malware. They reported that only 15 out of 42 studies focused on detection
methods and only three also performed prevention along with detection. A summary of
the state-of-the-art approaches categorized as detection, prevention, or both is provided in
Table 1.

2.1. Static Approaches

Rodriguez et al. [15] presented a static approach based on machine learning SVM
techniques. They used the dataset of Alexa 1 Million and selected the features of WASM
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signatures of cryptojacking malware for its detection. Similarly, Ruth et al. [16] also
optimized the detection of web-based cryptojacking malware. They studied 138 million
websites in three top-level domains and analyzed the malicious websites. They developed
a fingerprinting methodology that was six times more efficient than the publicly available
blacklisting techniques. According to them, the Coinhive is the platform used for illegal
cryptomining, used in mining more than 1290 Moneros [17] back in 2018. Both of the above
approaches are static and deal with the detection of cryptojacking attacks only. These
approaches do not prevent cryptojacking malware after its detection. Kelton et al. [18] also
presented an in-browser tool called CoinSpy based on deep learning. It is a cryptojacking
classifier for the detection of cryptomining activities within a web page. They combined
several alert signals from cryptomining scripts run within a web page. They also analyzed
both injected websites and websites in the wild. Their approach was robust compared to
the state of the art and achieved a 97% detection accuracy.

2.2. Dynamic Approaches

Naseem et al. [19] presented a dynamic web-based cryptojacking detection approach
called Minos. They used WASM-based samples collected from the malware dataset of Pub-
licWWW and focused on the image frames of the malicious samples using a Convolutional
Neural Network (CNN). Their detection technique achieved an accuracy of 98.97% while
using only 4% of the CPU, making this approach very convenient to run on any platform.

Rauchberger et al. [20] presented a framework for detecting and analyzing in-browser
cryptojacking malware, named MiningHunter. This framework can detect malware even if
implementing an obfuscation technique on it. It was used on Alexa’s top 1 million websites
and gathered 13 million unique websites containing JavaScript embedded in them. They
used a total size of 246 GB of websites. They found that 3178 websites had cryptojacking
malware embedded in them. They classified these cryptojacking attacks based on matching
and provided in-depth details of their effect on the internet.

Similarly, Munoz et al. [21] developed machine learning techniques and analyzed
the NetFlow and IPFIX features. They used the decision tree algorithm and were able
to detect cryptocurrency miners. Their detection technique is cost-effective as it requires
no payload to analyze a packet. Overall, this dynamic approach achieved a recall value
of 90% while using the network traffic studied via the Stratum protocol as a dataset of
six cryptocurrencies. Musch et al. [22] presented an in-browser cryptojacking attack and
examined its three phases. They also used Alexa’s top 1 million websites as a dataset for
their study. They concluded that 0.2% of websites are affected by cryptojacking malware.
They also studied the insights of cryptojacking malware (e.g., specific code features and
how much revenue they may generate) and their countermeasures.

Liu et al. [23] also presented a detection technique for an in-browser cryptojacking
malware. They used a dataset of 1159 snapshots of memory of the running browsers that
modified the browser kernel code of Chrome. They used a Recurrent Neural Network
(RNN) model and analyzed the features of Heap snapshots and the code stack to detect
in-browser cryptojacking attacks. They achieved a 95% precision rate and a 93% recall
value. Caprolu et al. [24] analyzed the network features and achieved the true positive rate
(TPR) of 92%. Similarly, Kelton et al. [18] used CPU memory features from the Alexa 100k
dataset by applying a neural network and achieved an accuracy of 97.9%.

Gangwal et al. [25] used the SVM approach and analyzed the features of hardware
cache events. They achieved 97% precision in cryptojacking detection. Similarly, Tahir
et al. [26] applied Random Forest by analyzing the features of HPC values and achieved
a 100% precision rate for detecting cryptojacking attacks. Konoth et al. [27] detected the
cryptojacking malware based on CPU cache events. They analyzed the Alexa 1 Million
dataset for cryptojacking detection.

Kharraz et al. [28] detected cryptojacking malware and analyzed the JavaScript execu-
tion and its compilation time. They used the Alex 600,000 dataset for analysis purposes.
Similarly, Hong et al. [29] presented a work that detects cryptojacking malware based
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on hash features. They used the Alexa 100,000 dataset and achieved a 100% TPR. Wang
et al. [30] presented a technique that dynamically detects malware based on WASM in-
structions. They used the Alexa 500 dataset for analysis and achieved 98% F1 scores. The
above study shows that most of the works from the literature focus only on the detection
technique and propose no prevention techniques. Sivaraju [31] also presented a new Cap-
Jack method using CapsNet technology and identified illicit Bitcoin cryptomining activity
in a browser. His approach can detect malware and fraudulent miners efficiently and
heuristically using system behavior or even in a situation where several apps are active
simultaneously. Ying et al. [32] presented a novel hardware-based cryptojacking detection
technique called CJSpector. They exploited hardware features, e.g., Intel Processor traces
and virtualization technology. Then, they used CJSpector based on the library functionality
and control flow information received from the processor. They used a Recurrent Neural
Network (RNN) to obtain relevant features from the optimized flow control information.
Their approach achieved average accuracy, recall, and F1 scores of 98.04%, 96.88%, and
97.92%, respectively, for the detection of cryptomining websites.

2.3. Hybrid Approaches

Suarez et al. [33] proposed a detection technique for in-browser cryptojacking malware.
They merged host and network-based features and selected 18 unique features from the
dataset of 8000 benign websites and the Alexa dataset with 8156 malicious samples, respec-
tively. The Alexa dataset extracted all the malicious samples from different mining service
providers. Then, they applied Z-score normalization and autoencoders for dimension
reduction and data compression in the preprocessing phase. The training data passed
through a deep, dense neural network had an input layer, three hidden layers, and one
output layer using the sigmoid activation function. The other layers used the leaky ReLU
as the activation function. Their approach has a recall score of 99.25% and has a short
training time.

Mani et al. [34] applied a deep neural network, Long Short-Term Memory (LSTM) [35],
that used the performance counters of Windows as the data. They trained their model on
1200 samples with the HPU and CPU usage as the key features and achieved a precision
value of 96% and a recall score of 97%. Yulianto et al. [10] presented a taint analysis to
prevent cryptojacking attacks. Their approach performed two detection checks. They first
measured the CPU usage of a website. If the CPU usage was more than 99%, they started
the second check. In this check, they compared the scripts run in the background of a
website with already blacklisted websites that contain traces of malicious scripts from the
AdBlock-no-coin-list. They added the malicious website to the log of malicious scripts.
They sent a notification to the user after the second check. Although, this technique deploys
double detection, using only 99% as a threshold which is not idle as the cryptojacking
malware and getting more and more complex which is capable of throttling the CPU usage.
However, only a notification is not sufficient to prevent malware.
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Table 1. Summary of the state of the art on in-browser cryptojacking malware.

Ref. No Approach Dataset Features Prevention
Method

Result

[15] Alexa: 33k
JS API consumption
of resources TPR: 95.95%

[16]
Static

Alexa 1 Million WASM signatures N/A

[19] PublicWWW
Images frames of
cryptojacking

Accuracy:
98.97 %

[20] Alexa 1 Million Web socket training N/A

[21] Network Traffic (Stratum) Network’s metadata
Recall:
91 %

[22] Alexa 1 Million CPU usage N/A

[23]
Memory of Browser
(1160 snapshots)

Stack features,
heap snapshots

Precision:
95%

[24] N/A Network features TPR: 92%

[18] Alexa: 100k CPU memory
Accuracy:

97%

[25] N/A Hardware cache events
Precision:

97.9%

[26]
Manually created
dataset (420 instances) HPC values

Precision:

100%

[27] Alexa: 1 M CPU and WASM based N/A

[28] Alexa: 600,000
JavaScript execution/
compilation TPR: 97.9%

[29] Alexa: 100,000 Hashes based TPR: 100%

[30]

Dynamic

Alexa: 500 WASM F1 score: 98%

[33]
Alexa 8000, 8156 samples
from Coinhive, etc.

Network traffic, CPU
speed, subprocesses

F1 score:
99.25%

[34] 1200 samples CPU features and HPC

N/A

Precision: 96%

[10] PublicWWW
CPU usage,
code analysis Notification N/A

[11]
In-browser cryptojacking
samples Blacklist behavior Kills the process N/A

[12]

Hybrid

Alexa 1 M
Code analysis +
CPU usage

Suspension of
process

FNR 1.83%
FPR 0%

Razali and Shariff [11] proposed two ways for the detection of cryptojacking malware.
First, they checked whether the URL of the visited website is present in the blacklisted
database. If not, then they analyzed the dynamic behavior and detected potential mining
behavior. They ran the application as a web extension with a user-friendly interface. They
detected inline cryptojacking and proxy networks. However, they required no special
permissions to work, which might be a potential risk. Moreover, their approach lacks to
auto-add the detected malicious website to the blacklisted domain.

Bian et al. proposed MineThrottle [12], a technique for detecting and preventing
cryptojacking malware. Their approach operates in three modes: interpreting, detection,
and defense. In the interpreting mode, it extracts mining-related code blocks. In the
detection mode, it detects the mining code’s speed and compares it with the average speed.
In the defense mode, it suspends the detected malicious code for a defined time interval.
MineThrottle uses block-level profiling to reduce the complexity and can work in real time,
but it only detects and prevents web-assembly (WASM) scripts. Cryptojacking malware
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that uses alternative programming languages, such as JavaScript obfuscation techniques,
can easily bypass their detection system. For example, Coinhive [36], a mining-service
provider frequently used for cryptojacking attacks, can not be detected by MineThrottle.

3. Proposed Approach

The complete lifecycle of this malware is shown in Figure 1. The attacker injects the
malicious cryptojacking malware script into a website. Either the website is owned by the
attacker or a website owned by someone else is compromised so that the payload can be
embedded into it.

Figure 1. Lifecycle of In-browser Cryptojacking.

The user requests that the malicious website and the website, along with the script, be
loaded on the client side, i.e., the user’s laptop, desktop, etc. The script gets executed and
communicates with a mining service provider. The script will ask for a mining task. The
service provider will assign it a mining task to perform cryptomining for some specified
cryptocurrencies such as Monero, etc. The script will execute that task on the client side.
Cryptomining will start at the user’s end using the user’s computational resources. The
results of the mining process will be sent to the service provider. Finally, these results will
be forwarded to the attacker who created the mining script. In this way, the attacker could
use the victim’s resources without the consent and knowledge of that victim.

Figure 2 shows the architectural diagram of our proposed approach. In addition to the
dynamic approach of extracting features such as CPU behavior, this methodology intro-
duces a static malware analysis technique, thus deploying a hybrid defensive mechanism.
When the user visits any website, before conducting the dynamic analysis of that website,
this approach compares the URL of that website with an existing blacklist containing the
URLs of already detected in-browser cryptojacking malware. This technique will check
whether that website’s URL is in that blacklist. If yes, the website will be blocked immedi-
ately, thus saving a lot of computational resources and time as there is no need to conduct
the dynamic analysis. On the other hand, if the website’s URL is not present, then static
code analysis will be conducted, and the URL will be blocked if detected as malicious; else,
the dynamic analysis will be performed. The interpreting mode will identify malicious
code blocks, the detection mode will measure the CPU time of that code block and compare
it against the average CPU time of cryptojacking malware, and finally, the defense mode
will suspend it if found to be malicious.
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Figure 2. Architectural diagram of proposed approach.

Following is a brief description of the various modules of our proposed approach.
Blacklist: The blacklist used for detecting cryptojacking malware is used by Tekiner et
al. [14] in their research. It consists of the URLs of malicious domains/websites which
perform cryptojacking. The corresponding public service provider was mentioned along
with their domain name. Moreover, the associated keywords were provided to find the
publicly known service provider and their user domains in PublicWWW. It should be noted
that it may be possible for some malicious domains to utilize more than one service provider
for the cryptojacking attack. Table 2 shows some malicious domains, their service providers,
and associated keywords. In general, 14 unique publicly known service providers were
used to generate this blacklist. Some famous service providers are service providers such as
Coinhive and Cryptoloot. Other service providers are less frequently used but still active.
Table 3 shows all the unique service providers and their associated keywords. The dataset
presented by Tekiner et al. [14] used the blacklists of previous studies. As some of these
blacklists were not regularly updated, the dataset was verified and filtered so that the final
dataset consists of 1273 malicious cryptojacking-infected websites. The blacklist contains
the URLs of those infected websites. The last time these websites were verified to contain
cryptojacking malware was on 24 July 2022.

Table 2. Example of Some Malicious Domains.

S. No URL Service Provider Keyword
0 rugbysearch.co.za jsecoin load.jsecoin.com

1 czh72.com nerohut nerohut.com/srv

2 raffey-cassidy.com jsecoin load.jsecoin.com

3 school-shop.su coinhive coinhive.min.js

4 247iphone.co.uk authedmine authedmine.min.js

rugbysearch.co.za
load.jsecoin.com
czh72.com
nerohut.com/srv
raffey-cassidy.com
load.jsecoin.com
school-shop.su
coinhive.min.js
247iphone.co.uk
authedmine.min.js
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Table 2. Cont.

S. No URL Service Provider Keyword
5 myweedmarket.com coinhive coinhive.min.js

6 viralrugby.com coinimp _client.start

7 mistressalanaaradia.com coinhive coinhive.min.js

8 greenheartoc.com coinhive coinhive.min.js

9 intellegration.com coinimp _client.start

10 my-shopping-list.de authedmine authedmine.min.js

11 arcadianlandscape.com coinimp _client.start

12 ifixxxx.com coinhive coinhive.min.js

13 sto-avtomix.ru monerise monerise_payment_address

14 dnd5spells.rpgist.net coinimp _client.start

15 tabforcancer.com coinhive coinhive.min.js

16 onkoliki.com coinhive coinhive.min.js

17 tildrakizumab.de coinhive coinhive.min.js

18 9-journal.com coinhive coinhive.min.js

19 niftybuzz.com jsecoin load.jsecoin.com

20 fhkwindowsanddoor.com browsermine bmst.pw

Table 3. Unique Public Service Providers.

S. No Service Providers Keywords
1 coinimp _client.start

2 coinhive coinhive.min.js

3 jsecoin load.jsecoin.com

4 cryptoloot CRLT.Anonymous(

5 webminepool WMP.Anonymous(

6 browsermine bmst.pw

7 wpmonerominer wp-monero-miner

8 nerohut nerohut.com/srv

9 webminerpool webmr.js

10 coinhave cdn.minescripts.info

11 deepminer deepMiner.Anonymous

12 monerise monerise_payment_address

13 webmine webmine.cz

14 coinnebula CoinNebula

Statical Code Analysis: In this phase, the source code of the input website is examined to
find out if that website communicates with any of the above 14 mentioned unique public
mining service providers. If that website turns out to be malicious, it will be blocked from
being loaded on the user’s machine, else the dynamic analysis is carried out as explained
next.
Mining-Code Blocks Identification: The code blocks are identified, which contain mining-
related instructions. In this way, only selected code blocks are extracted for further analysis
in the second mode. The entire code is not used in the detection mode because overhead
needs to be excluded. If the entire website code was analyzed, processing time would
increase heavily, making this protection mechanism not a real-time defensive technique.

myweedmarket.com
coinhive.min.js
viralrugby.com
_client.start
mistressalanaaradia.com
coinhive.min.js
greenheartoc.com
coinhive.min.js
intellegration.com
_client.start
my-shopping-list.de
authedmine.min.js
arcadianlandscape.com
_client.start
ifixxxx.com
coinhive.min.js
sto-avtomix.ru
monerise_payment_address
dnd5spells.rpgist.net
_client.start
tabforcancer.com
coinhive.min.js
onkoliki.com
coinhive.min.js
tildrakizumab.de
coinhive.min.js
9-journal.com
coinhive.min.js
niftybuzz.com
load.jsecoin.com
fhkwindowsanddoor.com
bmst.pw
_client.start
coinhive.min.js
load.jsecoin.com
CRLT.Anonymous(
WMP.Anonymous(
bmst.pw
wp-monero-miner
nerohut.com/srv
webmr.js
cdn.minescripts.info
deepMiner.Anonymous
monerise_payment_address
webmine.cz
CoinNebula
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Thus, it is necessary to keep the processing time as limited as possible. The selected code
blocks are identified as possible mining scripts if they have some mining-related properties,
such as calculating hashes, etc.
Feature Analysis: The identified code blocks are measured concerning CPU time. Then,
they are compared with the average time calculated from the malicious sample. Different
mining service providers are utilized to calculate the baseline value. They are termed
malicious if they pass a specified threshold from that average baseline value. The formula
used for decision is:

cpu_speed ≥ avg_speed − c ∗ σ (1)

where cpu_speed is the calculated CPU time of a code block, avg_speed denotes the average
CPU time of cryptojacking malware, the last symbol denotes the variance in the malicious
cryptojacking samples, and c is an arbitrary constant for which different values are used
in this research paper. Thus, if the above equation is true in terms of CPU time for a code
block, it is termed malicious; otherwise, it is considered non-malicious.
Defense Phase: The malicious code blocks are suspended for some time interval and then
enter the detection mode again. The sleep() function is called in that code block to make
it disabled for some time to continue its execution. According to the research paper, the
sleep interval used was 10 s. After that interval, that code block faces the detection mode
again, and the cycle continues. This way, cryptojacking malware will face too many delays
to mine a block and get the reward. Hence, cryptomining becomes inefficient.

4. Implementation Details

In this study, the experimental procedures were performed utilizing a Dell Latitude
E5450 laptop equipped with an Intel Core i5-5300U CPU clocked at 2.30 GHz, 8 GB of
RAM, and a storage capacity of 400 GB. The experiments were conducted on a Windows
10 Pro operating system. The Chromium Depot Tools [37] were utilized to manage and
maintain the Chromium codebase. The toolset, which includes scripts for building, testing,
and deploying Chromium and tools for managing dependencies and code reviews, was
used to download and build the Chromium source code and execute automated tests on
the codebase. The Chromium Depot Tools demonstrated to be a robust and versatile toolset
for managing and developing the Chromium project, allowing for streamlined and efficient
development and helping to ensure that the operations in the malware safety lab were
conducted without limitations on resources.

4.1. Datasets

A dataset consisting of 1000 instances was used in this paper for the experiments.
Of these 1000 samples, 30 are malware, and 970 are non-malware. These samples were
collected from Alexa [38] and using PublicWWW [39] service. The second most common
source is PublicWWW [39], a tool that finds keywords, signatures, etc., in websites’ HTML,
CSS, or JavaScript code.

4.2. Evaluation Metrics

The selection of evaluation metrics is an important aspect of evaluating the per-
formance of the proposed approach. In this study, we have used four commonly used
evaluation metrics, true positive (TP), false negative (FN), false positive (FP), and true
negative (TN), to evaluate the performance of the approach. True positive (TP) refers to the
correct classification of malware samples, and false negative (FN) refers to the incorrect
classification of malware samples. False positive (FP) refers to the incorrect classification of
non-malware samples as malware, and true negative (TN) refers to the correct classification
of non-malware samples as non-malware. These metrics are commonly used in the litera-
ture [37] for evaluating the performance of malware detection systems, as they provide a
comprehensive view of the system’s performance. They are widely accepted as they are
easy to interpret and can be used to calculate other evaluation metrics, such as precision,
recall, F1-score, and accuracy.
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(1) Accuracy:
TP + TN

TP + TN + FP + FN
(2)

(2) False Positive Rate:
FP

TN + FP
(3)

(3) False Negative Rate:
f racFNTP + FN (4)

5. Experimental Evaluation

Using the dataset of 1000 websites having 30 malicious and 970 non-malicious
inputs, the proposed approach was followed, and the experimental results are reported
in Figure 3. It shows the confusion matrix obtained for the proposed methodology. The
proposed approach classifies an input sample as malicious if its URL is found in the blacklist,
the statical code analysis detects any communication of that website with the public service
providers, or Equation (1) is satisfied; otherwise, it is predicted as a non-malicious input.
Out of 30 malicious inputs, 26 were detected as TP, while 4 were incorrectly classified as
FN, whereas regarding the 970 non-malicious inputs, all the inputs were correctly detected
as non-malicious, and no FP was detected.

Figure 3. Confusion Matrix.

By analyzing the above output, it can be seen that an accuracy rate of 99.6% was
achieved. At the same time, the false negative rate is 13.3%. Table 4 shows the evaluation
metrics with their corresponding values.

Table 4. Performance Evaluation of Proposed Approach.

S. No Metrics Values
1 Accuracy 99.6%

2 False Positive Rate 0%

3 False Negative Rate 13.3%
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5.1. Performance Evaluation

In addition to the dynamic analysis of calculating the CPU usage, the proposed
approach has integrated two static analysis techniques: the blacklisting technique and
the signature-based detection technique. As we have seen in the previous sections, high
accuracy and low false negative rates were achieved. On the other hand, integrating
multiple techniques increases the execution time. This section will calculate and compare
the performance evaluation of the static analysis with the dynamic analysis.

For experimental purposes, the execution time (in seconds) required for the static
and dynamic techniques on five sample websites has been presented. If the in-browser
cryptojacking malware is identified at the first defense layer (blacklisting), the second and
third defenses will not be run. If the second technique (signature-based detection) identifies
the malware, the third defense technique (dynamic analysis) will not be executed. Out of
five websites, two contained WASM code. We have chosen the samples so that all three
defense techniques will be executed to calculate the performance overhead for the worst
case. It can be seen that the blacklisting technique has the lowest execution time. The
signature-based detection takes relatively more time than the blacklisting technique, while
the dynamic analysis takes the most time. It is because a dynamic analysis requires the
malware to be executed for some time. In contrast, a static analysis is performed without
executing the malware. Thus, a static analysis requires less time than dynamic approaches.
The average increase in the execution of the state-of-the-art work by integrating both static
approaches is 7.01%. The maximum increase is 10.7%. Figure 4 shows the execution times
in seconds of the static and dynamic analysis, while Table 5 also shows the percentage
increase in the execution time. Figure 5 shows how much percentage of the total execution
time both the static and dynamic techniques use.

Table 5. Performance Evaluation (in seconds).

S. No Website WASM/
Non-WASM

Blacklisting
Technique

Signature-
Based

Technique

Total
Static

Analysis

Dynamic
Analysis

Percentage
Increase

1 http://beerthievery.com Non-WASM 0.0023 0.04626 0.04884 1.042 4.68%

2 http://www.rotoglow.com/ Non-WASM 0.00161 0.10990 0.11167 1.034 10.7%

3
https://www.dailypaws.com/cats-
kittens/cat-names/most-popular-
cat-names-2021

Non-WASM 0.001683 0.06111 0.06384 2.714 2.35%

4 https://wasm4.org/play/
lingword/ WASM 0.001579 0.08252 0.08528 1.176 7.25%

5 https://secure.imvu.com/ WASM 0.001496 0.13784 0.13984 1.379 10.1%

http://beerthievery.com
http://www.rotoglow.com/
https://www.dailypaws.com/ cats-kittens/cat-names/most-popular-cat-names-2021
https://www.dailypaws.com/ cats-kittens/cat-names/most-popular-cat-names-2021
https://www.dailypaws.com/ cats-kittens/cat-names/most-popular-cat-names-2021
https://wasm4.org/play/lingword/
https://wasm4.org/play/lingword/
https://secure.imvu.com/
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Figure 4. Performance Comparison between Static and Dynamic Approaches.

Figure 5. Execution Time in Percentage for Static and Dynamic Approaches.

5.2. Discussion

The proposed methodology is supposed to overcome the limitation of the state-of-
the-art approach, which in this is to extend the detection and prevention of in-browser
cryptojacking attacks from WASM modules only to both WASM and non-WASM code
instructions. By looking at Table 4, it can be analyzed that the proposed solution was
able to detect malicious websites better than the previous method presented by Bian et
al. [12]. The accuracy has improved from 97.6% to 99.6%. Moreover, the false negative
rate has reduced from 60% to 10%. The experiments were also performed on a larger
dataset with 1000 instances containing 30 malicious instances to make the results more
reliable. The state-of-the-art approach achieved an accuracy of 97.5%, while the proposed
approach achieved an accuracy of 99.4%. All these evaluation metrics show that this pro-
posed methodology is more accurate while detecting malicious samples with a maximum
performance overhead of 10.7%. This is because the proposed methodology can detect
non-WASM service providers’ scripts and detect WASM code blocks only. Thus, the results
confirm that the research gap in the state-of-the-art work has been solved efficiently. The
experiments show that the proposed approach can efficiently detect and prevent in-browser
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cryptojacking attacks in real time. It has achieved an accuracy of 99.6% with a low false
negative result of only 13.3%. Moreover, integrating the static and dynamic analyses has
increased the performance overhead by only 10.7% for the worst scenario. All these metrics
show that the proposed approach is a suitable defense against in-browser cryptojacking
attacks. Below is a comparison of this approach with the previous works.

Comparison with the State of the Art

As it can be seen from Table 1, many papers do focus on the detection of in-browser
cryptojacking attacks only. Work presented by Tahir et al. [26] has achieved a precision rate
of 100% but is focused only on detection. Other hybrid approaches such as that of Suarez
et al. [33] achieved an F1 score of 99.25% but still lack a prevention procedure. The work
presented by Yulianto et al. [10] focuses on preventing cryptojacking attacks but uses only
100 input samples. Moreover, its prevention technique is limited to only notifying the user.
Another hybrid preventive technique is that of Razali and Shariff [11]. It successfully blocks
the malicious input, but no results were included in their paper, and thus no comparison
can be made. The work presented by Bian et al. [12] is the closest work to ours, and thus,
we implemented their work and used the same dataset as used for our work. It turned
out that for the same dataset, [12] achieved an accuracy of 97%, while our work achieved
an accuracy of 99.6%. Thus, our work out-stands the state-of-the-art work in preventing
in-browser cryptojacking malware by 2.6%. This is because the proposed methodology can
detect non-WASM service providers’ scripts along with WASM-based cryptojacking scripts,
while [12] can detect WASM code blocks only. Thus, the results confirm that the research
gap in the state-of-the-art work has been solved efficiently.

6. Conclusions and Future Work

Hackers have been using in-browser cryptojacking malware for mining crypto on the
victim’s computer (of course, without consent and knowledge). Research has shown to
be limited to its detection by using static and dynamic malware analysis techniques only;
however, none of the studies report detection and prevention in the way we propose. In this
paper, we have presented a hybrid approach to detect and prevent installing cryptojacking
malware. Further, our approach advances the state of the art in terms of accuracy as well:
we report an overall accuracy of 99.6%. Unlike the existing approaches, which focus mainly
on WASM-based detection, our approach is equally useful in both WASM and non-WASM
cryptojacking attacks. The proposed methodology aims to improve the detection and
prevention of in-browser cryptojacking attacks by including both WASM and non-WASM
code instructions. The results of the experiments show that this approach is more accurate
than the previous state-of-the-art approach, with an accuracy of 99.6% and a false negative
rate of only 10%. Additionally, the experiments were performed on a larger dataset, making
the results more reliable. The proposed approach has also shown a low-performance
overhead of 10.7%. Overall, the proposed approach is a suitable defense against in-browser
cryptojacking attacks.

The proposed methodology has improved the detection accuracy of the state-of-
the-art work. Using multiple behavior parameters in a dynamic analysis, such as the
network behavior and CPU time, could potentially improve further the detection accuracy.
This can be a future direction for this type of research. As the malicious script has to
communicate with the mining service provider, different network behaviors could be
studied and included in the analysis to yield better results.
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