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ABSTRACT
Systems Modeling Language (SysML) is the de facto standard in
the industry for modeling complex systems. SysML v2 is the new
version of the language with reworked fundamentals. In this paper,
we explore how the new formal semantics of SysML v2 can en-
able formal verification and various forms of automated reasoning.
Formal verification involves mathematically proving the correct-
ness of a system’s design with respect to certain specifications or
properties. This rigorous approach ensures that models behave as
intended under all possible conditions. Through a detailed examina-
tion, we demonstrate how five specific tools – Gamma, MP-Firebird,
Imandra, SAVVS, and SysMD – can formally analyze SysML v2
models. We show how these tools support the different concepts in
the language, as well as the set of features and technologies they
provide to users of SysML v2, such as model checking, theorem
proving, contract-based design, or automatic fault injections. We
propose a workflow for applying formal methods on SysML v2
models, illustrated by example models and artifacts generated by
the above tools.

CCS CONCEPTS
• Software and its engineering→ Systemmodeling languages;
Formal methods.
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1 INTRODUCTION
Model-based Systems Engineering (MBSE) has been promising the
automation of systems engineering workflows from the beginning,
which would be especially beneficial in Verification and Valida-
tion (V&V) [21, 24, 25, 33]. However, popular MBSE languages like
SysML generally lacked the capabilities required to achieve this
vision. SysML’s main limitations include the lack of precise seman-
tics [16]; poor interoperability between tools, as well as between
SysML and other engineering languages [9, 26]; and unsatisfac-
tory cohesion between different diagrams representing the same
information [3].

SysML v2 promises to address most of these limitations [29]. It
has a formal semantics based on first-order logic, with a language
Core (technically part of the Kernel Modeling Language, or KerML,
which is the base language of SysML v2) that provides a formal
base ontology. It enables the combination of these basic concepts
and relations into more complex, high-level elements like parts,
steps, or states of a system. The new language has a standardized
textual syntax in addition to the graphical diagrams, which greatly
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simplifies interoperability and allows easier integration of external
tools to process the models written in the language. Furthermore,
SysML v2 features a richer set of elements, including new concepts
like analysis or verification cases, formal requirements, and different
kinds of specialization relationships uniformly applicable to almost
all elements.

These powerful new features greatly facilitate the application of
formal methods (FM) – in particular, formal verification, constraint
propagation, automated reasoning, test and code generation, simu-
lation, as well as fault injection and safety analysis. The Formal
Methods Working Group of the OMG’s Systems Modeling Commu-
nity1 was founded by organizations actively working on integrating
formal methods tools with SysML v2. The group’s goals include 1)
providing feedback about the syntax and semantics to the language
designers, 2) creating domain-specific libraries to introduce formal
concepts into the language (like temporal logic), and 3) proposing a
uniform and generic workflow for the application of formal meth-
ods tools. In this paper, we aim to present the current status of our
effort, with a special emphasis on the proposed workflow 3) and the
tools currently being integrated with the language. Even though
this is still a work in progress, we believe that seamless integration
of formal methods in MBSE to automate and enhance V&V work-
flows is essential for the success of these techniques (both MBSE
and FM). Thus, we find it very important to raise awareness, get
feedback, and spark more participation in the scientific community.

The paper is structured as follows. Section 2 summarizes the
most important new features of SysML v2 relevant to FM. Section 3
explains the basic concepts of formal methods regarding typical use
cases in systems engineering. Section 4 presents the tools currently
being integrated with SysML v2 by members of the Formal Methods
Working Group. Section 5 introduces the proposed workflow for
applying formal methods on SysML v2 models. Finally, Section 6
concludes the paper and sketches the envisioned future work.

2 CURRENT STATE OF SYSML V2
This section summarizes the relevant new features of SysML v2 [29].

2.1 Language Architecture and Semantics
In contrast with the previous version, SysML v2 is not built on
top of UML as a profile. Instead, a new general-purpose modeling
language has been designed to serve as the foundation of domain-
specific languages. This language is called the Kernel Modeling
Language (KerML) [27].

KerML has three layers. The Root layer provides a graph struc-
ture for the syntax of the language with elements and relationships
(which are themselves elements), as well as annotations that can
be used to provide metainformation for elements, including lan-
guage annotations and tool-specific information that can help in
the integration of external tools and languages. The Core layer in-
troduces the primitives of the ontological semantics: types divided
into classifiers and features, and several relationships between them,
including several specialization relationships. This layer defines the
semantics of modeling elements in first-order logic axioms. Finally,

1Established by the Object Management Group to address open and future issues
related to the SysML v2 language – see https://www.omg.org/communities/systems-
modeling-community.htm.

the Kernel layer defines a rich set of reusable concepts (including a
native expression and action language) specializing the base types
and relationships and defining their semantics with constraints.
These concepts are further refined in SysML v2 to provide the set
of concepts typically used in systems engineering.

The ontological semantics means that KerML and SysML models
are interpreted in terms of classification, i.e., things in the real
or imagined universe the model is about are classified by some
of the types in the model, in accordance with the rules defined
by relationships and constraints between the types. For example,
if type 𝐴 specializes type 𝐵, then any valid interpretation that
classifies something as an instance of type 𝐴 must also classify it
as an instance of type 𝐵.

As mentioned above, types are divided into classifiers and fea-
tures. The former classify “single things” in the universe, while
the latter classifies “sequences” (or tuples) of things (i.e., directed
relationships). Since features are also types, it is possible to have
longer sequences representing, e.g., navigation chains, to support
modeling based on the context instead of only based on types (called
“usage-oriented” modeling). Specialization relationships may be be-
tween classifiers (subclassification), features (subsetting to specify
inclusion of feature values and redefinition to refine the constraints
on an inherited feature), or between a feature and a type (feature
typing to denote the type of feature values).

This kind of semantics is called declarative as it declares the
constraints to accept an interpretation as valid. In contrast, an op-
erational semantics prescribe the steps to come up with a valid
interpretation. Consequently, a declarative semantics makes it easy
to check if an interpretation is correct with respect to a model, but
does not aid in deriving such an interpretation, whereas an opera-
tional semantics has the opposite advantages and disadvantages.

SysML v2 comes with both a textual and a graphical concrete
syntax. The textual syntax has a number of clear benefits when
it comes to interoperability with external tools, as it can be used
a standardized and tool-independent exchange format. It is also
easier to represent results produced by an external tool in SysML v2.
The new Systems Modeling API and Services component provides
full model access and supports shared repositories with Git-like
semantics [28]. It supports shared modeling sessions, integration
of external tools like CAD and PDM systems, and provides another
avenue to integrate formal methods tools.

2.2 New Modeling Elements
SysML v2 introduced a number of new concepts that make the
application of formal methods easier.

Requirements. Even though requirements existed in SysML v1,
they only had a natural language representation and some links
to other modeling elements. In addition to the natural language
representation, requirements in SysML v2 may declare their sub-
ject, have attributes, and define a constraint to formally state the
requirement. Furthermore, requirements may specialize each other,
leading to increased reusability and a native support for require-
ment templates.

Analysis and verification cases. In addition to use cases, SysML v2
introduced the generic “case” concept as a usage of a subject in a
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specific context (in the case of use cases, an illustration of some
user interaction). Two new cases are analysis and verification cases,
which can also declare their subjects, as well as an objective (such
as the calculation of a measure or the verification of a requirement)
and a series of steps to derive one of its quantitative (analysis case)
or qualitative (verification case) properties. These cases can also
specialize each other, e.g., to refine the steps and model a more
specific execution of the case.

Annotations. There are several kinds of annotations that can
label model elements without contributing to the semantics. No-
table examples are “doc” comments, which provide documentation,
language annotations, which give the representation of an element
in another language, and metadata, which can capture any kind of
metainformation such as tool-specific data.

Language extension and libraries. It is very easy to create model
libraries in SysML v2 due to the flexible language and rich set of
specialization relationships. Furthermore, the language has a pow-
erful mechanism for language extension that replaces stereotypes
and profiles in favor of semantic metadata to introduce user-defined
keywords, the semantics of which can be defined via an implicit
specialization of the selected library concept. This solution allows
for extending the language relatively seamlessly.

2.3 Standardization status
At the time of writing this paper, SysML v2 is in its last finalization
phase, expected to be published in about 6-9 months. The Systems
Modeling Community (SMC) is actively supporting this effort by
working on parts of the language and analyzing and exercising
it in different contexts and use cases to find potential issues and
enhancements.

One particular use case is the language’s ability to support the
application of formal methods, which is investigated by the Formal
Methods Working Group, including the authors of this paper. The
results presented in the later sections, therefore, represent a work
in progress aiming to shape the language and propose practical
patterns, potentially included in the final version. Some of the
authors are actively involved in the finalization of the standards,
which makes this goal realistic.

Although the semantics of SysMLv2 is rooted in formal methods
with a mapping to first order logic, we mentioned that these foun-
dations have been created with an ontology-based representation
of the models. The introduction of time and the semantics of exe-
cutions of the models is still under development. The semantics of
state machines and other behavioral models does not match easily
the transition systems usually used by formal methods such as
model checking [37]. One of our main goals is therefore to adjust
the semantics to ease the application of formal methods.

3 FORMAL METHODS FOR SYSTEMS
ENGINEERING

The language characteristics outlined in the previous section facil-
itate the integration of formal methods to automate the analysis,
verification, and validation of models. The literature on formal
methods exemplifies a variety of such integrations to provide sys-
tem and software engineers with powerful methods such as formal

verification, constraint propagation, automated reasoning, test and
code generation, simulation, as well as fault injection and safety
and reliability analysis.

The Formal MethodsWorking Group of the OMG’s SystemsMod-
eling Community was founded by organizations actively working
on integrating formal methods tools with SysML v2. Potential use
cases of such methods by software and system engineers include:

• Formalization and validation of requirements: requirements
can be formalized with logical formulas; these can be ex-
pressed in SysML v2 constraints or extensions defined with
libraries to introduce temporal logic operators; their con-
sistency can be checked with SAT or SMT solvers, or with
model checkers in the case of temporal logics such as LTL.

• Formal verification of behavioral models: the behaviors of
the system and components can be designed with state ma-
chines and activities; formal methods such as model check-
ing and theorem proving are able to provide proof of their
correctness with respect to the requirements.

• Contract-based compositional reasoning: systems are usually
decomposed into subsystems and components; their prop-
erties can be structured into assumptions and guarantees
and refined along the architectural decomposition; model
checking can be used to verify their refinement.

• Design space exploration: the model parameters can be used
to represent design options in the same model; SAT/SMT
solvers can be used for parameter instantiation and con-
straint propagation, exploring different design alternatives.

• Fault injection and safety analysis: the safety and reliability
of the system can be analyzed taking into account faults and
their propagation; the behavioral models can be extended
with faults and their effect can be analyzed withmodel check-
ing techniques.

• FDIR and diagnosability: the correctness of Fault Detection,
Isolation, and Recovery (FDIR) components can be analyzed
to ensure the reliability of the system’s tolerance to faults;
to this purpose, the model can be enriched with the speci-
fication of the observables and the diagnosability of faults
can be formally proved.

• Model-based test case generation: the model can be used to
generate systematically test cases for the final implementa-
tion; model checking or symbolic execution techniques can
be used to explore different paths of the behavioral models.

4 ANALYSIS AND VERIFICATION TOOLS FOR
SYSML V2

This section presents five different tools that support various analy-
sis and verification functionalities with formalmethods for SysML v2,
namely SysMD (see Section 4.1), Monterey Phoenix (Section 4.2),
Gamma (see Section 4.3), Imandra (Section 4.4) and SAAVS (Sec-
tion 4.5). The features of these tools are summarized in Table 1.

These tools cover the majority of the use cases presented in Sec-
tion 3. In an imaginary scenario, users could use SysMD to analyze
the static constraints most likely applicable to the physical design
of the system. They could then go on to explore properties of the
envisioned dynamic behavior with the help of Monterey Phoenix.
Once they are confident about the design, they could translate
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the resulting model into SysML and use Gamma to map it into
the input languages of different formal verification tools. Either
through Gamma or using direct transpilation, Imandra could be
used to prove the properties of the modeled behavior and further ex-
plore corner cases. Finally, tools integrated in SAVVS (again, either
throughGamma or directly) could be used to perform compositional
verification safety analysis for larger configurations of the system’s
components. In the following sections, we present the capabilities
of the tools in more detail, then Section 5 will introduce how we
envision the integration of all these techniques with SysML v2.

4.1 SysMD
SysMD [34, 35] is a SysML v2 based tool that targets the use cases
documentation, elicitation of requirements, modeling of architec-
tures, and the interactive analysis and calculation of key perfor-
mances. Unlike other tools in Section 4 it does not target the verifi-
cation of behavior modeled by state machines. SysMD supports the
modeling and elicitation of requirements by notebook-like interface
in which documentation and models can be integrated in a single
Markdown document. This in particular targets to permit easier
exchange of models in a value chain.

Analysis and consistency checking are supported by the sup-
port for ranges on Integers and Reals and constraint propagation.
For constraint propagation, SysMD applies methods known from
SAT/SMT solving. By constraint propagation, it computes an over-
approximation of values that satisfy all assertions and invariants.
A simple example is shown in the first package of Fig. 1.

Note that also inequalities and Boolean expressions are sup-
ported. For validation/verification, specified Requirements are ex-
ported to domain-specific languages, e.g., SystemC, and after ver-
ification or characterization, the results are imported. Thereby,
SysMD leaves the specific verification for specific verification tools,
but provides a basic framework for contract-based approaches in
different domains.

4.2 MP-Firebird
Monterey Phoenix (MP), developed at the US Navy Naval Postgrad-
uate School (NPS), is a language, approach, and tool for formally
modeling scope-complete sets of behaviors2. MP was initially de-
veloped to support executable software architecture [1, 2], but was
quickly applied for other types of systems involving safety, security,
and time-critical behaviors including hardware, organizations and
roles, operational and business processes, and other workflows. The
publicly accessible MP-Firebird tool3 provides users with a guaran-
tee of 100% coverage of paths through the provided behavior logic
up to a user-defined scope, where scope is defined as the number
of event iterations. This helps technical and non-technical users
formally state and refine their own cognitive perceptions of how
systems of interest behave and interact, and bring subtle undocu-
mented requirements into their field of awareness and attention.

The MP-Firebird user first captures the current understanding
of a system’s behavior as a set of imperative and declarative rules
representing actor behaviors, interactions, and other constraints in
an MP schema. Next, the user runs that schema to produce a set of

2https://nps.edu/web/monterey-phoenix
3https://firebird.nps.edu/

event traces representing all behavior logic permitted by the rules.
In fact, MP produces a complete set of all behavior combinations
for the modeled system and environment that is exhaustive up to a
user-defined number of event iterations, or scope, so that Jackson’s
small scope hypothesis that most design errors can be exposed in
small examples [23] can be applied. In addition to being a workforce-
accessible tool for generating scope-complete and consistent sets
of example event traces, a number of theorems that have a finite
number of cases to check can also be proved using MP.

Once the automatic event trace generation has occurred, the user
then inspects this set of traces for behavior examples that violate
design intention. MP-Firebird distinctly focuses on helping people
apply formal methods to their own inner thought process, as they
expose their own (cognitively internal) assumptions and errors,
including errors of omission concerning missed requirements and
unidentified risks. An MP-Firebird user does not need to know
the assertions in advance of using the tool; rather, MP helps them
discover what the assertions ought to be in the first place.

This assertion discovery process can often be conducted very pro-
ductively at the operational or solution-neutral architecture level,
without the design details or implementation code. “Unknowns”
gradually become “knowns” as they enter the MP user’s field of
awareness through an iterative process of inspection of the scope-
complete set of execution traces, which commonly includes ex-
pected, unexpected, acceptable, and unacceptable behaviors [18].
MP-Firebird can be used at any lifecycle stage as a verification, val-
idation, and refutation tool by novices through experts with a need
to probe for and expose undocumented expectations concerning
subtle but consequential behaviors that can arise from design deci-
sions – behaviors that meet requirements, but violate expectations.

MP-Firebird is currently being used to test SysML v2 semantics
in a series of model translation experiments to aid in the identifi-
cation of subtle language requirements that are otherwise difficult
to enumerate before example violations of intent are observed.
Future work includes an interface between the MP language and
KerML, and integration of the MP trace generator as a plug-in to
SysML v2 implementation tools, to provision SysML users with the
scope-complete execution trace generation capability of MP.

4.3 Gamma
The Gamma Statechart Composition Framework is an open-source4
Eclipse-based tool suite for the component-based design and verifi-
cation of reactive systems. At its core, it builds on a configurable
statechart language (GSL) [19] and a composition language (GCL) [8]
with precise semantics and validation rules to describe the func-
tional behavior of standalone components, and their integration
using various execution and communication modes to support the
modeling of synchronous and asynchronous systems. The emer-
gent models are automatically mapped into a low-level formalism,
called EXtended Symbolic Transition Systems (XSTS) [20], serving
as a common formal representation to capture reactive behavior.

Formal verification based on temporal properties is supported by
mapping XSTS models and properties into the inputs of different
model checker back-ends, namely UPPAAL [4], Theta [36], Spin [22]
and nuXmv [11]. Note that different model checkers utilize different

4https://github.com/ftsrg/gamma
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Table 1: Features of formal verification tools supporting SysML v2. ✓= full support; ✓–= experimental
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SAVVS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: SysML v2 language elements supported by the tools. ✓= full support; ✓–= experimental
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algorithms and can fit the needs of verifying systems with various
characteristics, like timed, synchronous, asynchronous, data- or
control-intensive systems. The mappings feature model reduction
and model slicing algorithms to allow for the verification of large-
scale systems. Back-annotation facilities automatically map the
verification results to execution traces in a high-level trace language
(GTL) [8]. Building on the model checking and back-annotation
functionalities [17], Gamma generates integration tests (in the form
of execution traces) based on manually defined test targets cap-
tured by declarative model queries [7], as well as customizable
structural (model element based), dataflow-based and interactional
coverage criteria [20]. Test cases are optimized and concretized to
different platforms, e.g., C or Java, to detect faults in the implemen-
tation of components, such as missing implementation of states
or transitions, incorrect variable definitions and uses or wrong
implementation of component interactions. Gamma also supports
fault injection based safety assessment via the xSAP tool [10] in ad-
dition to contract-based design based on model checking emergent
model behaviors against LSC scenario descriptions [5, 6], and LTL
properties using the OCRA tool [12].

Gamma features an automated model transformation from the
SysML v2 Pilot Implementation that maps (hierarchical) part defi-
nitions with state-based behavior into GCL and GSL models. The
emergent Gamma models then can undergo formal verification
using the above-described facilities. The results are automatically
back-annotated to SysML v2 using two different representations

(namely event sequence representations and process models) high-
lighting different aspects of the observed execution traces.

4.4 Imandra
Imandra is a cloud-native automated reasoning platform [30] de-
signed for the analysis of algorithms. Imandra is used for formal
verification, state space analysis, test-case generation, constraint
solving, rule synthesis, and other symbolic AI applications across
finance, defense, automotive, and manufacturing industries [14, 15,
31, 32]. Imandra Modeling Language (IML) is a general purpose
programming language (a formalized subset of the open source
programming language OCaml) designed for specifying models
and programs that can be reasoned about with Imandra.

Imandra’s logic is computational, based on a pure subset of
OCaml, with restrictions on types and higher-order functions that
allow conjectures to be translated into multi-sorted first-order logic
with theories, including arithmetic and datatypes [30]. Imandra
has novel features supporting large-scale industrial applications,
including a seamless integration of bounded and unbounded verifi-
cation (e.g., model checking and induction), first-class computable
counterexamples and efficiently executable models. The core rea-
soning mechanisms of Imandra are 1) a semi-complete procedure
for finding models of formulas in the logic mentioned above, cen-
tered around the lazy expansion of recursive functions, and 2) an
inductive waterfall and simplifier which "lifts" many Boyer-Moore
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ideas to Imandra’s typed higher-order setting. These mechanisms
are tightly integrated and subject to many forms of user control.

Imandra has recently added a SysML-v2-to-IML transpiler to en-
able the formal analysis and verification of SysML v2 models. The
transpiler converts SysML v2 models to native IML, and Imandra’s
automated reasoning can then be brought to bear on the IML encod-
ing of the model semantics. This leverages the dual nature of IML,
expressing SysML models naturally as executable OCaml programs,
which in turn have formal semantics by virtue of Imandra’s mecha-
nized formal semantics of IML. In addition to facilitating precise
reasoning about the model, this dual nature allows the IML models
to be used as high-performance (formal) digital twins, facilitating
runtime monitoring, audits, and optimization.

Imandra’s SysML integration is also powering new generative
AI applications, including a hallucination-free natural language
interface combining LLMs with Imandra’s automated reasoning for
answering questions about SysML models and their possible behav-
iors. This empowers Model-based Systems Engineers to leverage
formal methods without learning a new language or having a deep
understanding of automated reasoning, with all results derived by
Imandra reasoning about the SysML model via the SysML-v2-to-
IML transpiler.

4.5 SAVVS
SAVVS (Safety Analysis, Validation and Verification for SysMLv2)
is a set of plugins to extend the Eclipse-based SysMLv2 Pilot Imple-
mentation with the purpose of enabling validation, formal verifica-
tion, and safety analysis of formal models. SAVVS can be seen as the
evolution of CHESS [13], a cross-domain, model-driven, component-
based and open-source tool for the development of high-integrity
systems, which supports SysML v1.

SAVVS features an automatic Model-to-Model transformation,
eased by the use of open-source FBK libraries and facilitates the use
of FM tools OCRA [12], nuXmv [11], and xSAP [10]. The SysMLv2
language has been enriched with ad-hoc libraries to support LTL
operators, fault injection, and terms to exploit the contract-based
methodology.

The integration with nuXmv enables the verification of SysMLv2
state machines with powerful state of the art SMT-based model
checking algorithms that combine search-based techniques with
automated deduction and abstraction refinement.

Thanks to the integration with OCRA, SAVVS provides vali-
dation of assumption/guarantee properties in contracts as well
as checks on contract refinements and composite contract imple-
mentations exploiting the model checker. Model checking of state
machines can be therefore scaled up by analyzing the system model
compositionally, exploiting the contract-based decomposition.

Finally, fault injection enables Fault Tree Analysis and Failure
Mode and Effect Analysis. SAVVS uses xSAP as backend to generate
fault trees and FMEA tables. A partial support to Fault Detection
and Isolation provides Diagnosability Analysis and generation of
minimum observables set.

Counterexample traces, fault trees, and FMEA tables are reported
in the tool by means of dedicated views, as can be seen in Figure 8
and Figure 9.

5 UNIFIED VERIFICATIONWORKFLOW
This section proposes a unified way of handling various V&V tasks
in SysML v2, outlining how the tools presented in Section 4 inte-
grate (or plan to integrate) their results into the unified verification
workflow, developed by experts of the respective tools.

We will use four examples. The Tank model can be seen in the
first package of Figure 1, and it models a simple tank with a height,
width, and length, which can be used to calculate its volume. There
is also a requirement restricting the volume. The tank’s dimen-
sions are also bounded by ranges, which are currently displayed in
SysMD’s notation (this feature is not yet available in SysML v2).

The LightSwitch model (depicted in the rest of Figure 1) is a sim-
ple state-based component that has a port, through which “signals”
can be sent to turn the switch on or off (SysML v2 does not have
specific modeling elements for signals, but items can be used to
model things that can be exchanged). The state machine has two
states, and two Boolean variables are kept in sync with the states
via the entry and exit actions of the on state.

The third model is not included, but it is a more complex model
of a traffic light that we will use to demonstrate Imandra’s semantic
analysis capabilities.

The fourth model, also not included for space limits, is a redun-
dant sensor example, which exhibits a simple redundancy schema
and is used to demonstrate the safety analysis and fault tree gener-
ation with SAVVS and xSAP (Figure 8).

5.1 Analysis and Verification Tasks
In Figure 3, we propose to use analysis and verification cases from
SysML v2 to model the analysis and verification tasks directly in
SysML. This approach has a number of advantages:

• The description of the task can be included in the model
repository, which will provide version control for the con-
figuration of these tasks.

• Results of the analyses can also be included in the model
as refinements (via specialization) of the original task (see
Section 5.2).

• V&V tasks and their results can refer to and may be referred
to from other parts of the model, enhancing traceability by
justifying design decisions with analyses and their results.

• Describing tasks, configurations, and results in SysML pro-
vides a tool-independent way of managing this information,
facilitating interoperability.

• Tasks in the model can be executed automatically in con-
tinuous integration workflows by querying the model and
passing the tasks to the appropriate tools.

The tasks and results defined in Figures 3 and Figure 4 use el-
ements from a formal methods model library which we plan to
propose as a standard library. For now, an illustration is given in
Figure 2. It contains 1) illustrations of using library concepts, such as
the special objective for test generation, to model configurations of
tasks; 2) an example for user-defined keywords, such as the one for
test generation tasks, which are special verification cases (see [29]
for a detailed explanation of the language extension mechanism);
3) a stub of a temporal logic library; and 4) a metadata definition
that can be used to annotate the model with information that is
represented by external artifacts.
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package TankModel {

import SI::*;
import ISQ::*;
part def Tank {

attribute height: LengthValue = [10.0 .. 100.0] [cm];
attribute width: LengthValue = [1.0 .. 1.1] [m];
attribute length: LengthValue = [1.0 .. 1.1] [m];
attribute volume: VolumeValue = height * width * length;

}
requirement def VolumeRange {

subject t : Tank;
require constraint maxVol { t.volume <= 2000.0 [L] }
require constraint minVol { t.volume >= 1000.0 [L] }

}
}
package LightSwitchModel {

import ScalarValues::Boolean;
item def TurnOn;
item def TurnOff;
port def Control {

in item turnOn : TurnOn;
in item turnOff : TurnOff;

}
part def LightSwitch {

port control : Control;
attribute isOn : Boolean := false;
attribute isOff : Boolean := false;
exhibit state Status {

state off;
state on {

entry action { assign isOn := true;
assign isOff := false; }

exit action { assign isOn := false;
assign isOff := true; }

}
entry; then off;
transition first off

accept turnOn : TurnOn via control
then on;

transition first on
accept turnOff : TurnOff via control
then off;

} } }� �
Figure 1: Tanks and Switch example models in SysML v2.

The tasks in Figure 3 include 1) an analysis case to apply con-
straint propagation to the tank model, with respect to the require-
ment specified for its volume; 2) a verification task describing the
verification of a temporal property5 requiring the two Boolean flags
to be in an exclusive or relationship; 3) a test generation task that
also uses a verification case, but it is declared with the user-defined
keyword #testgeneration and its objective must be specified with
the TestGenerationObjective library element that can be param-
eterized with the kind of coverage the test generator has to maxi-
mize; and 4) a fault tree generation task that defines the automatic
fault injection strategy, as well as the top level event – the question
is, what combination of faults can lead to the satisfaction of the
constraint describing the top-level event.

5.2 Representation of Analysis Results
As mentioned among the benefits of modeling tasks in SysML v2,
many of the results can also be modeled in SysML, which shall
facilitate traceability and interoperability between tools. Here, we
5Note that at the time of writing this paper, temporal logic is not yet supported in
KerML or SysML v2, but the Formal Methods Working Group is working on a proposal
to include it as a library.

� �
package FormalMethods {

// Test generation objective
enum def CoverageKind {

State; Transition; Interaction; //...
}
requirement def TestGenerationObjective {

attribute coverage : CoverageKind default State;
}
// User-defined keyword for #testgeneration tasks
abstract verification def TestGeneration {

objective : TestGenerationObjective;
}
abstract verification tgs : TestGeneration[*] nonunique;
metadata def testgeneration :> Metaobjects::SemanticMetadata {

:>> baseType = tgs meta SysML::Usage;
}
// Temporal logic (real library under development)
calc def <MustAlways> AG;
//...
// External artifacts as metadata
metadata def ExternalArtifact {

:> annotatedElement : SysML::CaseDefinition;
attribute name : ScalarValues::String;
attribute uri : ScalarValues::String;

} }� �
Figure 2: Illustration of the envisioned formal methods
model library.

� �
package TankAnalysis {

import TankModel::*;
analysis def CalculateDimensions {

subject t : Tank;
objective : VolumeRange;

} }
package LightSwitchAnalysis {

import LightSwitchModel::*;
import FormalMethods::*;
verification def VerifyProperty {

subject ls : LightSwitch [1];
objective proveCorrectFlags {

verify requirement {
require constraint {

MustAlways( ls.isOn xor ls.isOff )
} } } }
#testgeneration def GenerateTests {

subject ls : LightSwitch [1];
objective : TestGenerationObjective {

:>> coverage = CoverageKind::Transition;
} }
verification def GenerateFaultTree {

subject ls : LightSwitch [1];
objective o : FaultTreeGenerationObjective {

:>> faultInjection = Injections::FaultyWrites;
:>> topLevelEvent { ls.inOn and ls.isOff }

} } }� �
Figure 3: Analysis and verification cases describing formal
methods tasks.

illustrate how we envision the description of different results, based
on the outputs produced by the tools presented in Section 4. The
overarching pattern is that results are modeled as refinements (spe-
cializations) of the tasks, redefining (denoted by :>>) the subject to
introduce new details inferred by the formal methods tools (such
as stricter ranges, one or more execution traces, etc.).
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Constraint Propagation. The results of constraint propagation
performed by SysMD can be modeled as a refinement of the origi-
nal task (see Result :> CalculateDimensions) by redefining the
subject and its attributes, narrowing the ranges. In this example,
SysMD computes the height as [82.6..100]𝑐𝑚, and the possible vol-
ume as [1000..1210]𝑙 , considering the VolumeRange requirement.

Representation of Traces. An execution trace can also be modeled
as a refinement of the original model. The models in LightSwitch-
Cases illustrate this approach to represent the results of the verifi-
cation and the test generation tasks. In Witness (see Figure 4), we
see a counterexample for the requirement specified in the in-line
unnamed requirement element inside the proveCorrectFlags ob-
jective in Figure 3. The subject is redefined, along with its exhibited
state, and a subset (denoted by :>) of the off state is declared as s1.
Since SysML has ontological semantics based on classification, the
subset relationship indeed expresses our intent because s1will clas-
sify some of the things (system states in the real world) classified by
off – in this case, the first period when the switch is off. Since there
is currently no concise way to express the values of attributes while
the system is in a given state, we include this additional information
as a comment – which demonstrates that when we first reach the
off state, the flags are not (yet) set correctly because that will be
handled only by the entry and exit actions of the on state.

A more elaborated execution trace is generated as the single
test case found by Gamma to cover all the transitions in the model,
represented by Test1. A similar output could describe the behav-
iors found by MP during the exploration of the allowed behaviors,
which is currently visualized as illustrated in Figure 5. This model
is again a refinement of the original task, and it represents a test
case, similarly detailing the expected evolution of the state machine
through the redefinition of the subject and its exhibited state, as
well as the inputs necessary to trigger this behavior. The item defi-
nitions TurnOn1 and TurnOff1 specialize the corresponding item
definitions from the original model provided by the user, represent-
ing a subset of their instances – those that are sent in this execution.
These more special items are used in the redefinition of the tran-
sitions, which follow the same pattern of subsetting the original
transition as the states, as well as the send actions describing the
test case itself.

Representation of Auxiliary Information. Some analysis tools like
Imandra can calculate auxiliary information about the state space.
These are generally better suited to visual representations. Cur-
rently, SysML v2 has an open-source implementation based on
Jupyter [3], which is also used by Imandra to allow users to gener-
ate visualizations of their model’s state space. Illustrations of these
artifacts are shown in Figures 6 and 7, which show the 174 invari-
ant behavior regions of the traffic light model in an interactive,
explorable map, as well as a semantic diff of the state space before
and after a change in the model, with the two regions that actually
changed. These auxiliary artifacts can be included in the model
with a URI, as illustrated in the Witness in Figure 4.

Another example of auxiliary artifacts is the fault tree and FMEA
table generated by SAVVS. While these could be modeled in SysML
via a domain-specific library (which is subject to future work), it
is often better to visualize them. Figure 8 and Figure 9 show the
output of SAVVS for the redundant sensor example model.

� �
package TankResults {

import TankAnalysis::*;
analysis def Result :> CalculateDimensions {

subject t { // Values computed by constraint propagation
:>> height = 82.6 .. 100.0 [cm];
:>> width = 1.0 .. 1.1 [m];
:>> length = 1.0 .. 1.1 [m];
:>> volume = 1000 .. 1210 [L];

} } }
package LightSwitchTraces {

import LightSwitchAnalysis::*;
import VerificationCases::*;
verification def Witness :> VerifyProperty {

// Witness execution trace
subject ls : LightSwitch [1] {

:>> Status {
state s1 :> off; // isOn = false, isOff = false;

} }
@ExternalArtifact{name = "State Space Map";

uri = "<link to external artifact>";}
return verdict : VerdictKind = VerdictKind::fail;

}
#testgeneration def Test1 :> GenerateTests {

// Expected execution trace
item def TurnOn1 :> TurnOn;
item def TurnOff1 :> TurnOff;
subject ls : LightSwitch [1] {

:>> Status {
state s1 :> off; // isOn = false, isOff = false;
transition first s1

accept turnOn : TurnOn1 via control
then s1;

state s2 :> on; // isOn = true, isOff = false;
transition first s2

accept turnOff : TurnOff1 via control
then s3;

state s3 :> off; // isOn = false, isOff = true;
} }
// Test execution (inputs)
send TurnOn1() to sw.control;
then send TurnOff1() to sw.control;

}
verification def FaultTree :> GenerateFaultTree {

@ExternalArtifact{uri = "<link to fault tree>";}
}

}� �
Figure 4: Constraint propagation, model checking and test
generation results of the analysis tasks in SysML.

6 CONCLUSION
In this paper, we presented how the new SysML v2 language can
be integrated with formal methods techniques and tools via its
new features. We introduced five tools that are already being in-
tegrated with the language, and illustrated how we envision the
representation of their inputs and outputs. We proposed to model
the V&V-related tasks and their results in SysML v2 to achieve a
tool-independent, versionable, and traceable representation that
seamlessly fits into the system model.

While at the time of writing, SysML v2 is not yet released, and the
FormalMethodsWorkingGroup (includingmost authors) is actively
working on the integration of formalmethods and the new language,
we hope our work can inspire both the MBSE and FM communities
to investigate this topic and contribute with novel ideas. In the
future, we will continue the integration of our tools along the
lines of the solutions proposed in this paper, gradually building a
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Figure 5: An example trace (left) from the set of 3 traces (when
run at scope 1) that then generates the state diagram (right)
for the MP LightSwitch model. A state diagram is built in
MP by running a user’s model code. If the code has flaws, the
traces will display those flaws, and the output state diagram
will thus be incorrect until the issues are fixed.

Figure 6: Example output for Imandra’s invariant behavior
regions functionality.

Figure 7: Example output for Imandra’s semantic diff func-
tionality.

standardized formal methods model library and identifying best
practices to include analysis-related information in the model.
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