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Abstract
We present Speech-MASSIVE, a multilingual Spoken Lan-

guage Understanding (SLU) dataset comprising the speech
counterpart for a portion of the MASSIVE textual corpus.
Speech-MASSIVE covers 12 languages from different fami-
lies and inherits from MASSIVE the annotations for the in-
tent prediction and slot-filling tasks. Our extension is prompted
by the scarcity of massively multilingual SLU datasets and the
growing need for versatile speech datasets to assess foundation
models (LLMs, speech encoders) across languages and tasks.
We provide a multimodal, multitask, multilingual dataset and
report SLU baselines using both cascaded and end-to-end ar-
chitectures in various training scenarios (zero-shot, few-shot,
and full fine-tune). Furthermore, we demonstrate the suitabil-
ity of Speech-MASSIVE for benchmarking other tasks such as
speech transcription, language identification, and speech trans-
lation. The dataset, models, and code are publicly available at:
https://github.com/hlt-mt/Speech-MASSIVE
Index Terms: spoken language understanding, speech recogni-
tion, speech resources, multi-task model

1. Introduction
Multilingual speech corpora have limited coverage of speech-
related tasks, primarily focusing on automatic speech recogni-
tion (ASR) [1, 2, 3, 4] and speech translation (ST) [5, 6, 7, 8],
while neglecting spoken language understanding (SLU – the
task of extracting semantic information from spoken utterances,
which typically involves subtasks like intent detection and slot
filling). Unlike text processing, where extensive efforts in natu-
ral language understanding (NLU) have led to resources cover-
ing a wide range of languages [9, 10, 11, 12], SLU datasets are
mainly English-centric [13], with few exceptions [14, 15, 16].

Our goal is to bridge the gap in multilingual SLU draw-
ing inspiration from [16] and collecting speech recordings in
multiple languages. We start with the MASSIVE NLU (i.e.
textual) dataset [12], an ideal foundation due to its size, do-
main diversity, and broad coverage of languages, intent, and slot
types. Developed by commissioning professional translators
to localize the English SLURP dataset [13] into 51 languages,
MASSIVE comprises 1M labeled utterances spanning 18 do-
mains, with 60 intents and 55 slots. Our contribution, Speech-
MASSIVE, spans 12 languages from diverse families: Arabic,
German, Spanish, French, Hungarian, Korean, Dutch, Polish,
European Portuguese, Russian, Turkish, and Vietnamese. It
also facilitates evaluation across various speech tasks beyond
SLU, including ASR, ST, and language identification (LID). We
release Speech-MASSIVE publicly under CC-BY-SA license.1

1https://hf.co/datasets/FBK-MT/Speech-MASSIVE

Besides detailing the creation process involving a
crowdsourcing-based protocol for data collection and quality
control, this paper presents baseline SLU results on Speech-
MASSIVE. Our results with both cascade and end-to-end
architectures trained in different conditions (zero-shot, few-
shot, full fine-tune) will enable future comparisons and tracking
SLU advancements compared to the more mature field of NLU.
Lastly, we showcase Speech-MASSIVE’s versatility through
additional experiments on ASR, LID, and ST.

2. Speech-MASSIVE
2.1. Speech data collection and validation process

We created the speech counterpart of textual MASSIVE data by
recruiting native speakers through the Prolific crowdsourcing
platform.2 A first group of workers was instructed to record the
spoken version of MASSIVE sentences with guidelines empha-
sizing the importance of accurate and natural reading, as well
as proper recording conditions and strict adherence to the corre-
sponding text. To ensure high final data quality, a second group
of native speakers validated the recorded utterances. During
validation, participants were directed to read the original text,
listen to the recording, and label it as valid or invalid. Those
marked as invalid underwent a second iteration of this two-step
(recording and validation) process. After the second iteration,
the process concluded, irrespective of the outcome of the sec-
ond validation phase, to avoid potentially endless cycles. This
decision was also informed by the observation that, upon in-
specting the invalid recordings, we found some were marked as
such not due to a lack of adherence of the speech to the text but
because of grammatical errors in the original MASSIVE dataset
text. Correcting these errors was beyond the scope of our work.

To further enhance the reliability of the collected dataset,
we implemented two additional precautions. During the record-
ing phase, we instructed participants to review their own record-
ings before proceeding to the next sample, allowing them to
re-record if the audio was not properly acquired. Additionally,
in the validation step, four speech utterances were chosen from
Common Voice [1] and inserted among the samples for vali-
dation. Out of these four quality control samples, two inten-
tionally featured audio-transcript mismatches to be marked as
invalid. The other two cases had perfect audio-transcript align-
ment to be marked as valid. Care was taken to select quality
control samples with clear and intelligible audio. Validation re-
sults from a Prolific user were retained only if they accurately
assessed all four quality control samples. Any mistakes led to
the disregarding of their validations, requiring the entire set of
samples from that user to be re-validated by other participants.

2https://www.prolific.com, Compensated £9 per hour.
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Table 1: Speech-MASSIVE’s overall statistics. ‘# hrs’ displays
the recording duration for all samples (including invalid), while
‘# spk (Male/Female/Unknown)’ indicates the number of speak-
ers for all the samples (including invalid). The last 2 columns
(‘WER’, and ‘CER’) measures Whisper ASR performance.

lang split # sample # valid # hrs total
# spk (M/F/U) WER CER

ar dev 2033 2027 2.12 36 (22/14/0) 31.75 14.43
test 2974 2962 3.23 37 (15/17/5) 34.19 15.85

de
train-full 11514 11201 12.61 117 (50/63/4) - -

dev 2033 2032 2.33 68 (35/32/1) 11.24 3.96
test 2974 2969 3.41 82 (36/36/10) 11.84 4.16

es dev 2033 2024 2.53 109 (51/53/5) 7.61 3.00
test 2974 2948 3.61 85 (37/33/15) 8.95 3.76

fr
train-full 11514 11481 12.42 103 (50/52/1) - -

dev 2033 2031 2.20 55 (26/26/3) 10.20 4.42
test 2974 2972 2.65 75 (31/35/9) 11.09 4.71

hu dev 2033 2019 2.27 69 (33/33/3) 25.96 10.93
test 2974 2932 3.30 55 (25/24/6) 20.98 6.01

ko dev 2033 2032 2.12 21 (8/13/0) 25.29 7.13
test 2974 2970 2.66 31 (10/18/3) 26.42 8.04

nl dev 2033 2032 2.14 37 (17/19/1) 11.03 3.98
test 2974 2959 3.30 100 (48/49/3) 10.52 3.82

pl dev 2033 2024 2.24 105 (50/52/3) 9.94 4.88
test 2974 2933 3.21 151 (73/71/7) 12.58 6.22

pt dev 2033 2031 2.20 107 (51/53/3) 11.73 5.10
test 2974 2967 3.25 102 (48/50/4) 12.11 5.13

ru dev 2033 2032 2.25 40 (7/31/2) 8.55 4.06
test 2974 2969 3.44 51 (25/23/3) 8.99 4.57

tr dev 2033 2030 2.17 71 (36/34/1) 16.65 4.56
test 2974 2950 3.00 42 (17/18/7) 18.06 5.05

vi dev 2033 1978 2.10 28 (13/14/1) 16.65 10.5
test 2974 2954 3.23 30 (11/14/5) 14.94 9.77

2.2. Overall statistics

We chose 12 languages based on various criteria. Initially, we
considered the number of registered users on Prolific, sorting
the 51 languages covered in MASSIVE. Languages with fewer
than 200 users were excluded to ensure sufficient worker partic-
ipation to complete the entire acquisition and validation process
in reasonable time. Italian was also excluded due to the avail-
ability of the full dataset elsewhere [16]. Finally, with an eye
at the balance between budget considerations and linguistic di-
versity, from the remaining 18 languages we selected Arabic,
German, Spanish, French, Hungarian, Korean, Dutch, Polish,
European Portuguese, Russian, Turkish, and Vietnamese.

We collected speech recordings for MASSIVE’s develop-
ment and test splits. Acquiring the full training dataset (11,514
utterances for each of the 12 languages) exceeded our budget.
In a concession, our emphasis was placed on acquiring compre-
hensive training data for French and German, while we obtained
limited few-shot training data consisting of 115 utterances from
the training set for the remaining 10 languages (train-115 split).
Columns 1-6 of Table 1 provide statistics for the collected
dataset, including, for each language, the available data splits,
the number of recordings, hours of speech, and speakers (total,
male, female and unknown). The “# valid” column indicates
the count of human-validated utterances for each data split after
the two iterations. As a few speech recordings remained invali-
dated after our two recording-validation cycles, we retained for
each utterance the candidate with the lowest Word Error Rate
(WER) as transcribed using Whisper [17]. This ensures speech
availability for all MASSIVE utterances, even if some may not
perfectly align with the reference transcript. Additional infor-
mation regarding this is included in the corpus metadata.

2.3. ASR assessment

To assess Speech-MASSIVE in multilingual ASR, we used
Whisper, since it is one of the recent state-of-the-art multilin-
gual speech recognition models. We selected Whisper-large-
v3,3 utilizing it without additional fine-tuning for our ASR eval-
uation. Table 1 shows WER and character error rate (CER)
across languages and data splits. We compared ASR error rates
to those obtained on the FLEURS dataset [2].4 FLEURS gener-
ally yields lower WERs/CERs compared to Speech-MASSIVE.
The same observation was made for Italian in [16], which fol-
lowed a recording methodology similar to ours. This suggests
that the higher WERs are likely due to the inherent difficulty of
MASSIVE utterances compared to those in FLEURS. Further-
more, there are still discrepancies between our Whisper model’s
hypotheses and the references in the MASSIVE dataset (e.g.,
numbers reported in letters in MASSIVE references), which we
did not address as optimizing ASR WER was not our main goal.
Finally, we calculated the correlation coefficient between WERs
(CER for Korean) on Speech-MASSIVE and FLEURS, result-
ing in a value of 0.96. This shows that Whisper consistently
performs across both datasets, despite Speech-MASSIVE being
more challenging than FLEURS for ASR.

3. SLU Baselines and Beyond
In this section, we establish several SLU baselines, evaluating
them with different training conditions and metrics described in
§3.1. Firstly (§3.2), we build a NLU model, serving as an up-
per bound free from ASR errors. Secondly, we build a cascaded
SLU system (§3.3), in which an ASR component transcribes
input audio and the NLU model utilizes ASR output for infer-
ence. Thirdly, to complete the inventory of SLU baselines, we
introduce an end-to-end (E2E) model (§3.4). We conclude by
showcasing the versatility of Speech-MASSIVE beyond SLU,
computing additional baselines for tasks such as speech transla-
tion and language identification (§3.5).

3.1. NLU/SLU training conditions and metrics

To simulate different training resource scenarios, we report per-
formance in three different settings: (a) Zero-shot: we train the
model only with one language data from the train split (11,514
utterances) and evaluate in all other different languages; (b)
Few-shot: we employ subsets (115 examples) for each of the
12 non-English languages, aligning with our train-115 split.5

Additionally, we integrate the full zero-shot training split to en-
rich the multilingual training dataset, totaling 12.8k samples for
training; (c) Full fine-tune (NLU only): 11,514 training exam-
ples of all 12 languages are pooled (138k samples for training).

We assess intent prediction in a given text or speech with
intent accuracy.6 We report the average result (and standard
deviation) of three runs with different seeds. All experiments
were executed on 1 A100 80GB GPU.

3https://hf.co/openai/whisper-large-v3
4Accessible for our 12 languages except Arabic at https://

github.com/openai/whisper/discussions/1762
5train-115 covers all 18 domains, 60 intents, and 55 slots (including

empty slots).
6Due to space limitations, we report only intent accuracy scores.

However, additional SLU metrics (e.g., micro-averaged slot F1, exact
match accuracy, slot-type F1, slot-value CER) exhibit a similar trend
and are available in the GitHub repository.
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Figure 1: NLU vs Cascaded SLU (Intent Accuracy) on our Speech-MASSIVE Dataset.

3.2. NLU model

Our NLU system uses the mT5 encoder-decoder architecture
[18], selected for its superior performance as demonstrated in
[12], where the mT5 text-to-text model outperformed both the
mT5 encoder-only model and the XLM-R model [19]. We
use a pre-trained mT5-base model,7 and fine-tune both the en-
coder and decoder in a sequence-to-sequence manner. We sup-
ply source and target texts as described in [12] and shown in
Figure 2. For instance, the French sentence (Fr) “où puis-je
aller ce soir” is annotated in slots (Fr-Slots) as ‘Other Other
Other timeofday timeofday” and intent (Intent) as “recommen-
dation events” in MASSIVE. We adapt those annotations to
create source and target texts to be used in training: for the
source text (Fr-Src in [NLU]), we prepend “Annotate:” to the
French sentence (Fr); for the target text (Fr-Tgt in [NLU]), we
concatenate slots (Fr-Slots) and intent (Intent).

Figure 1 displays the intent accuracy results of our NLU
system across all languages and modes (zero-shot, few-shot,
full fine-tune), along with those of the cascaded SLU models
discussed in §3.3. Unsurprisingly, NLU performance increases
when moving from zero-shot to full fine-tune regimes. Also,
as expected, higher scores are observed for languages (Nl, Fr,
De, Pt, Ru, Es and Pl) that are better represented in the mC4
multilingual dataset used to train mT5 model [18]. Finally, the
highest results align with those reported in the MASSIVE paper
[12], serving as a suitable reference upper bound for compar-
isons with the SLU models discussed in the following section.

3.3. Cascaded SLU model

We develop a cascaded SLU system in which an ASR model
based on Whisper-large-v3 transcribes the speech, and the same
NLU models of §3.2 (zero-shot, few-shot, full fine-tune) predict
slots and intent from the transcribed texts.

The SLU intent accuracy scores in Figure 1 reveal that
processing automatically transcribed utterances introduces per-
formance drops of varying magnitude across the different lan-
guages and training modes. This is especially notable for lan-
guages with lower ASR quality (i.e., higher WER), such as Ar,
Hu, Ko, Tr, and Vn. This supports our expectations about the
difficulty for the downstream textual NLU component of the
SLU cascade to handle unrecoverable transcription errors. As
a matter of fact, in zero-shot mode, the distance with the text-
only upper-bound NLU system is considerably smaller for lan-
guages featuring higher ASR quality. Similar to what we ob-

7https://huggingface.co/google/mt5-base

[Original text in MASSIVE]
En) where can i go tonight
En-Annot) where can i go [timeofday : tonight]
En-Slots) Other Other Other Other timeofday
Fr) où puis-je aller ce soir
Fr-Annot) où puis-je aller [timeofday:ce soir]
Fr-Slots) Other Other Other timeofday timeofday
Intent) recommendation events

[NLU]
Fr-Src) Annotate: où puis-je aller ce soir
Fr-Tgt) Other Other Other timeofday timeofday
recommendation events

[Cascaded SLU]
Fr-ASR) où puis je aller ce soir
Fr-Src) Annotate: où puis je aller ce soir
Fr-Tgt) Other Other Other timeofday timeofday
recommendation events

[E2E SLU]
Fr-Tgt) où puis-je aller ce soir | Other Other
Other timeofday timeofday | recommendation events

Figure 2: Input/Output formatting across NLU/SLU tasks. En:
original English text. Fr: French translation in MASSIVE. An-
not, Slots and Intent: slot and intent annotation of MASSIVE.

served for NLU (§3.2), cascaded SLU performance in few-shot
mode improves thanks to the additional multilingual data. The
gains are particularly significant for languages with lesser rep-
resentation in mT5 model, such as Tr, Vn, Ko, and Ar. Lastly
in full fine-tune mode, leveraging a larger multilingual training
dataset leads to substantial performance enhancements. While
the gains are variable, we observe that: i) for some languages
(i.e. De, Ru, and Es), the gap with the highest results of the tex-
tual NLU upper bound shrinks to less than two points, while ii)
for all languages, the scores are significantly higher than those
achieved by the textual NLU models dealing with clean input
not only in zero-shot, but also in few-shot mode.

3.4. E2E SLU model

To complete the inventory of SLU baselines for comparison,
we introduce an end-to-end (E2E) SLU model: a direct solu-
tion that bypasses intermediate text representations (ASR tran-
scripts). We utilize Whisper, following the approach proposed
in [20], which showed superior performance compared to cas-
caded systems and other speech encoders like wav2vec2.0 [21]
and HuBERT [22]. Model training follows a sequence-to-
sequence approach, with predictions extended to include tran-
script, slots, and intent. This allows us to leverage both speech
and text information in the model’s predictions. We intro-
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Table 2: LID accuracy and ST BLEU results with Whisper-large-v3 on Speech-MASSIVE.

lang ar de es fr hu ko nl pl pt ru tr vi
split dev test dev test dev test dev test dev test dev test dev test dev test dev test dev test dev test dev test

LID accuracy 90.9 89.5 98.9 98.4 99.0 98.6 98.7 98.9 94.6 95.8 99.1 98.7 94.8 94.9 95.3 94.6 95.9 96.0 99.1 98.8 96.1 96.0 90.7 93.2
ST BLEU 17.2 16.6 36.7 38.2 38.5 38.2 38.7 40.1 19.4 20.6 19.7 19.5 40.0 38.9 29.9 28.8 32.4 32.3 28.4 28.2 26.7 26.0 18.9 20.2

duce an additional separator ‘‘|’’ between the tasks, allow-
ing Whisper’s tokenizer to tokenize the target text as is, without
the need to add slots or intents to the original vocabulary. Two
specific tokens, ‘‘|’’ and ‘‘ ’’, are removed from Whis-
per’s suppressed token list, as they are required for predicting
SLU outputs as task separators and in certain intent values. In
zero-shot mode, we fine-tune Whisper-large-v3 with either a)
the English train set of [13], or b) the French train set of Speech-
MASSIVE. These two conditions (En vs Fr) allow us to in-
vestigate the impact of the training language on zero-shot E2E
SLU across all other languages. Additionally, in few-shot mode,
we fine-tune Whisper-large-v3 with the English or French train
sets, along with train-115 splits from other languages. We do
not provide a full fine-tune E2E SLU mode since only two lan-
guages in Speech-MASSIVE are supported by full train splits.

Table 3 compares cascaded and E2E SLU performance in
both zero-shot and few-shot modes. It is worth noting that the
comparison between the two approaches is fair only when using
the English train set (En), since they utilize the same training ut-
terances albeit in different modalities (written form for cascade
and spoken form for E2E). In this condition (En), for zero-shot
mode, cascaded SLU outperforms E2E SLU for all languages.
In few-shot mode, we note a different trend, with cascaded and
E2E models exhibiting similar average performance. Employ-
ing the French training set from Speech-MASSIVE (Fr), E2E
SLU surpasses models trained on the English dataset from [13]
(En) in both zero-shot and few-shot modes. In zero-shot mode,
we observe improvements of more than 5 points for 9 out of
11 languages. In few-shot mode, although the influence of
the training language (En vs Fr) diminishes due to multilingual
training, using French as the majority language still yields bet-
ter performance than using English. These results highlight the
significant influence of the ‘training language’ on the perfor-
mance of E2E SLU models in zero/few-shot settings. Speech-
MASSIVE provides a unique opportunity to explore this in-
triguing observation further. Finally, examining French (Fr) re-
sults representing the full fine-tune mode for this language, E2E
SLU achieves intent accuracy of 85.87%, compared to 84.73%
for cascaded SLU and 87.43% for NLU given in Fig.1.

3.5. Other baselines

We conclude our experiments using Whisper-large-v3 without
any finetuning to compute other baselines and demonstrate the
versatility of Speech-MASSIVE. We perform Language Iden-
tification (LID) and Speech Translation (ST) across x→en lan-
guage directions. Different types of tokens are fed to Whisper’s
decoder depending on the tasks as shown in Figure 3. Table 2
reports Whisper-large-v3 model’s LID accuracy and ST BLEU
[23] on Speech-MASSIVE. LID is calculated over all the sam-
ples in dev and test splits. For ST, instead, BLEU is computed
on subsets of dev and test splits identified using meta informa-
tion from MASSIVE to exclude samples with localized transla-
tion. This filtering is necessary to ensure an accurate assessment
of translation quality, as localized references may introduce dis-
crepancies in word choice (see §1). Besides indicating the ver-
satility of Speech-MASSIVE for evaluation purposes, our addi-

ASR
[<|startofstranscript|>, <|language id|>,
<|transcribe|>, <|notimestamps|>]
E2E SLU
[<|startofstranscript|>, <|language id|>,
<|transcribe|>, <|startoflm|>, <|notimestamps|>]
LID
[<|startofstranscript|>]
ST
[<|startofstranscript|>, <|language id|>,
<|translate|>, <|notimestamps|>]

Figure 3: Various task control tokens fed to Whisper’s decoder.

tional baselines on speech-related tasks offer valuable reference
scores for cross-task comparisons and for exploring collabora-
tive solutions to leverage potential mutual benefits.

Table 3: Intent accuracy of cascaded and E2E SLU. Both E2E
SLU zero-shot and few-shot models are trained either with ini-
tial English train set of [13] (En) or with French train set of
Speech-MASSIVE (Fr). We exclude French (*) from the average
as fr-FR scores are no longer zero/few-shot when French is used
as the training language.

lang Casc. (En)
zero-shot

E2E (En)
zero-shot

E2E (Fr)
zero-shot

Casc. (En)
few-shot

E2E (En)
few-shot

E2E (Fr)
few-shot

ar 49.27 ± 0.90 33.04 ± 4.74 40.00 ± 2.44 54.56 ± 0.73 57.71 ± 1.46 61.22 ± 1.74
de 76.29 ± 0.14 70.68 ± 1.37 73.91 ± 0.73 78.08 ± 0.50 78.64 ± 0.65 78.45 ± 0.64
es 75.70 ± 0.19 73.12 ± 0.75 78.62 ± 0.41 78.05 ± 0.33 79.79 ± 0.66 80.59 ± 0.31
fr 75.61 ± 0.48 68.43 ± 2.30 85.87 ± 0.26* 77.56 ± 0.13 77.11 ± 0.77 85.93 ± 0.35*
hu 63.43 ± 0.92 36.62 ± 1.49 42.28 ± 2.20 68.70 ± 0.80 60.75 ± 2.40 63.93 ± 0.19
ko 60.93 ± 0.84 57.96 ± 2.26 66.09 ± 1.86 68.11 ± 0.04 72.82 ± 0.23 74.09 ± 0.73
nl 78.82 ± 0.45 65.17 ± 0.57 67.24 ± 1.44 78.93 ± 0.34 77.49 ± 0.77 77.37 ± 0.47
pl 74.57 ± 0.37 64.82 ± 1.51 64.38 ± 1.29 76.11 ± 0.39 74.85 ± 0.58 76.88 ± 1.37
pt 73.12 ± 0.49 62.91 ± 1.97 72.60 ± 1.01 77.21 ± 0.65 78.15 ± 1.16 80.02 ± 0.29
ru 75.96 ± 0.19 69.06 ± 1.71 74.75 ± 0.28 76.96 ± 0.08 79.22 ± 0.67 79.51 ± 0.26
tr 65.32 ± 0.61 47.60 ± 3.08 55.08 ± 1.09 70.32 ± 0.48 69.44 ± 1.62 71.14 ± 1.15
vi 60.19 ± 0.39 35.44 ± 1.48 49.67 ± 2.30 64.77 ± 0.98 63.36 ± 1.69 68.71 ± 0.33

avg. 69.10 ± 0.19 57.07 ± 1.82 62.24 ± 0.92 72.45 ± 0.32 72.45 ± 0.53 73.81 ± 0.58

4. Conclusion
We introduced Speech-MASSIVE, a multilingual SLU dataset
spanning 12 languages for intent prediction and slot-filling
tasks. Alongside dataset creation, we established baselines for
SLU across various resource and architecture configurations.
Additionally, we showcased Speech-MASSIVE’s versatility be-
yond SLU, extending to tasks such as ASR, LID, and ST. With
its diverse array of native speakers and recording environments,
Speech-MASSIVE holds promise as a benchmark for multilin-
gual, multimodal, and multi-task speech research. Future re-
search opportunities include exploring further the influence of
training languages on zero/few-shot SLU performance, thor-
oughly comparing cascade and E2E SLU solutions, assess the
effect of including multi-task and multilingual corpora in the
training of speech foundation models, and pushing the bound-
aries of E2E multi-task speech systems beyond our baselines.
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EU Horizon Europe (HE) Research and Innovation programme
grant No 101070631. We also acknowledge the support of the
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