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Abstract

To ensure the electrical power supply, inspections are frequently performed in the power
grid. Nowadays, several inspections are conducted considering the use of aerial images
since the grids might be in places that are difficult to access. The classification of the
insulators’ conditions recorded in inspections through computer vision is challenging, as
object identification methods can have low performance because they are typically pre-
trained for a generalized task. Here, a hybrid method called YOLOu-Quasi-ProtoPNet is
proposed for the detection and classification of failed insulators. This model is trained
from scratch, using a personalized ultra-large version of YOLOv5 for insulator detection
and the optimized Quasi-ProtoPNet model for classification. For the optimization of the
Quasi-ProtoPNet structure, the backbones VGG-16, VGG-19, ResNet-34, ResNet-152,
DenseNet-121, and DenseNet-161 are evaluated. The F1-score of 0.95165 was achieved
using the proposed approach (based on DenseNet-161) which outperforms models of the
same class such as the Semi-ProtoPNet, Ps-ProtoPNet, Gen-ProtoPNet, NP-ProtoPNet,
and the standard ProtoPNet for the classification task.

1 INTRODUCTION

Insulators in the transmission lines are components respon-
sible for supporting the electrical power grid and isolating
the electrical potential [1]. When there is an accumulation of
contamination on the surface of these components, electrical
discharges may occur [2–4]. Contamination is difficult to
measure because its presence does not represent an immi-
nent failure, besides the rain can help clean the insulators [5].
Over time the contamination becomes encrusted and strongly
attached to the surface of insulators, causing these components
to lose their insulating properties [6]. Apart from contamina-
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tion, insulators are vulnerable to vandalism and other issues
because they are mostly installed outdoors [7–9].

When insulators lose their insulating properties intermit-
tent discharges can happen, affecting power quality [10]. With
increasing partial discharges and leakage current [11], the con-
dition can worsen until disruptive discharges occur, resulting in
the shutdown of the power grid [12]. In many cases after a shut-
down, the system is re-established and the fault does not have
the same features (distribution of the contamination over the
insulation surface), which makes it difficult to locate. The elec-
trical outage represents a serious problem for the reliability of
the electricity supply [13], reducing the power quality indices

IET Gener. Transm. Distrib. 2023;1–11. wileyonlinelibrary.com/iet-gtd 1



2 STEFENON ET AL.

that are used to measure whether the electric utility is adequately
serving consumers [14].

To mitigate electrical system shutdowns, inspections are car-
ried out by specialized teams to identify signs of adverse
conditions [15]. Power system examinations can be performed
using specific equipment or visual inspections [16]. The equip-
ment that is generally used in inspections are acoustic detectors
[17], ultraviolet sensors [18], infrared cameras [19], and others
[20]. One of the disadvantages of using this specific type of
equipment is that the operator needs to be specialized in its
operation having the ability to interpret a possible indication
of a failure, which is difficult due to the need for multitasking
operators [21].

Among the image processing techniques for classification,
convolutional neural networks (CNNs) have been widely used
for pattern recognition [22], highlighting specific applications
for electrical power system fault identification [23]. There are
several variations of these models and their applications are
promising for the identification of adverse conditions in the
power grid. Currently available, there is the prototypical part
network (ProtoPNet), which as a major advantage has inter-
pretability in some cases, beyond improving the classification
can assist in the interpretation of the result. Based on this char-
acteristic, the ProtoPNet is promising to solve the problem of
classification presented here.

Generally, CNNs have difficulties identifying small objects,
you only look once (YOLO) stands out to solve this task [24],
having a better performance than sliding windows methods
based on standard CNNs [25]. Considering that the YOLO
model has a high capacity to detect objects and the ProtoP-
Net approach has a higher classification capacity, here, we
propose the hybrid optimized YOLOu-Quasi-ProtoPNet that
combines the best advantages of each class of these models. The
contributions of this paper are:

∙ The first contribution is the object detection performance
improvement of the YOLOv5 model proposing a person-
alized ultra-large version (YOLOv5u), which has proven
superior to the variations of the standard YOLOv5 mod-
els (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x).

∙ The second contribution is related to the use of a hybrid
approach, which uses the best capabilities of the YOLOv5u
for object detection and a Quasi-ProtoPNet model for clas-
sification. Considering the evaluation of VGG-16, VGG-19,
ResNet-34, ResNet-152, DenseNet-121, and DenseNet-161
as backbone.

∙ The third advantage of the proposed model is its explainabil-
ity. The explainability helps the users to understand why the
model performs the classification, helping the maintenance
teams work on the need. The Quasi-ProtoPNet uses proto-
types of large spatial dimensions that help the model classify
images based on objects rather than the backgrounds of the
objects in the images.

The rest of this paper is organized as follows: In Sec-
tion 2 related works regarding insulator fault detection using

computer vision are presented. Section 3 presents the proposed
YOLOu-Quasi-ProtoPNet model. In Section 4 the structure
optimization of the model and fine-tuning are presented and
discussed. In Section 5 the final considerations are presented
and further works are suggested.

2 RELATED WORKS

The evaluation of transmission power system insulators through
inspections is important to keep the power grid in good working
condition [26]. Several authors have been researching state-
of-the-art models to improve network inspections [27–29].
Although network monitoring is efficient using specific equip-
ment, in some situations it is unfeasible to take measurements in
hard-to-access places, which can be solved by visual inspections
[30]. The use of computer vision becomes a promising alterna-
tive to obtain a model that is effective in identifying adventitious
conditions in the electrical power grid [31].

Besides porcelain insulators, glass insulators, and polymeric
insulators can be found in electrical power transmission lines.
Glass insulators have similar characteristics to porcelain insu-
lators, considering that these materials have a high fusion
temperature, which results in greater robustness to electric dis-
charges [32], and therefore, they are the most common in
electrical networks that are in operation for a long time (over
30 years). Polymeric insulators have been recently used because
they are lighter, making them easier to install and perform main-
tenance [33]. The model proposed here could be applied to
other types of profiles and materials, beyond those evaluated in
this work, being necessary to train the model with the insulators
in question.

According to Salem et al. [34], the insulator profile has
an influence on its performance. They have evaluated insula-
tors coated with room-temperature vulcanizing considering the
influence of humidity on flashover based on the evaluation of
different profiles. Salem et al. [35], using finite element methods
(FEM), presented interesting results regarding the difference of
profiles using glass insulators. They have highlighted that the
issue depends on the location and dimension of the pollution
region. FEMs have been applied to evaluate the design of power
system components by simulating dynamic variations and opti-
mizing the component’s structure [36], making it promising for
the definition of the insulator design [37, 38] and its ability to
support stress [39].

Due to the popularization of unmanned aerial vehicles
(UAVs), it is becoming increasingly common to use these types
of aircraft to perform image-based monitoring of the power grid
[40]. The main advantage of this approach is that UAVs can per-
form grid inspection in hard-to-reach places. Field teams that
travel along the branch line taking photographs have a hard time
doing this work when there is a large variation in relief, mak-
ing the inspection unfeasible in some situations. For this reason,
the use of UAVs is a promising alternative for power system
inspection [41].

According to Foudeh et al. [42], one of the major difficul-
ties in performing inspections in electrical power systems is
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STEFENON ET AL. 3

the lack of adaptability to adverse conditions, thus the use of
UAVs has received much attention for overhead electric power
lines patrol process. Due to the aging of composite insula-
tors, the phenomenon of micro-cracks occurs, which can be
identified with UAVs through image analysis. Jin et al. [43]
show that through image pre-processing techniques it is pos-
sible to extract the texture of micro-cracks and identify them
easily.

Another strategy that can be applied to improve the
classification of adherent conditions in insulators is image pre-
processing. In many situations, filters can be used to take the
focus of the analysis of the background of the image and con-
centrate the evaluation on the fault locations. Edge detection
techniques such as Sobel and Canny edge detection can be used
to highlight the presence of faults, thus improving classification
without representing a significant computational effort increase
[44].

The fusion convolutional network (FCN) is an outstanding
model for real-time monitoring of the power grid via UAVs.
The FCN model proposed by Mussina et al. [45] consists of
a CNN combined with a binary classifier multilayer neural net-
work. By using the FCN model for a multi-modal information
fusion system, the image classification output of the CNN can
be combined with the leakage current values, thus obtaining
a model with high classification capability. Among the CNNs,
models based on VGG-16 [46], ResNet-101 [47], and AlexNet
[48] have been used for this task.

The models that have stood out for object detection are the
YOLOs because their architecture is based on a single shot
and generally has better performance results than other models
for the same application [49]. With this advantage, this model
proves to be promising for the task being presented here. How-
ever, since the YOLO models are based on a standard backbone
classifier that in versions YOLOv3 and YOLOv4 are based on
Darknet53, it may have low classification performance when
few images are used for training. To improve this problem, a
hybrid method that uses another classifier may be an alterna-
tive to improve the fault identification capability of this class
of models.

For image classification tasks, often the reasoning can be
based on prototypical aspects of a class. Evidence of this dif-
ference aids the final decision [50]. The ProtoPNet dissects
the image by finding prototypical parts and combines evidence
from the prototypes to make a classification. Based on this
advantage, the combination of the YOLO model for object
detection with a model based on ProtoPNet becomes a promis-
ing proposal for the challenge presented here, and this model
will be presented in more detail in the next section.

3 YOLOu-QUASI-ProtoPNet

Considering the high performance of the YOLOv5 for object
detection and the high classification capability of the Quasi-
ProtoPNet model, here a hybrid model called YOLOu-Quasi-
ProtoPNet is proposed. The structure of the proposed model is

presented in Figure 1, which is divided into steps from A to F
and is explained in detail in this section.

To improve the proposed method, an optimization of the
network structure is performed by changing its classifier, in
which VGG-16, VGG-19, ResNet-34, ResNet-152, DenseNet-
121, and DenseNet-161 are evaluated. In Figure 1a, the images
of the dataset are loaded, and the detection of insulators is per-
formed using YOLOv5, wherein the structure size variations
are evaluated (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l,
YOLOv5x, and YOLOv5u).

3.1 You only look once

YOLO is a CNN that splits images into grids, having each grid
cell detect objects within itself [51]. This approach is a single-
shot algorithm, which means that it only requires processing
the image once to detect and classify the object under consid-
eration. Recently the YOLO has shown satisfactory results, and
the framework has been improved several times since its initial
release [52].

The input images are divided into an S × S grid, where
each square of the grid (i) predicts the target bounding box,
which corresponds to its degree of confidentiality. Therefore,
the confidence of the classes (cl ) of objects (ob j ), is given by:

pr (cli |ob j ) ⋅ pr (ob j ) ⋅ IoU truth
pred = pr (cli ) ⋅ IoU truth

pred . (1)

After splitting the image into grids a class probability mean
average precision (mAP) is created to identify the target objects
and bounding boxes to determine if the desired objects are
located in this confidence region. The YOLOv5 backbone has
its structure (presented in Figure 1b), different from previous
versions of the model which use the Darknet-53, this makes this
version more effective and flexible to be modified according to
the needs of the project.

The YOLOv5 framework has features that makes it promis-
ing for fault classification in insulators. The YOLOv5 applies
Mosaic to improve the detection performance of small objects,
which is a difficulty when inspections of insulators are carried
out, considering that the failure may be small in relation to the
insulator chain.

Using Mosaic, an increase in the data amount is intro-
duced into the network training process, which consequently
allows the increase of the batch size, causing each iteration
to have more data. This feature might be an advantage in
terms of having additional information to the model, how-
ever, it results in an increase in the need for data processing
power. Since the training is performed offline, the higher
computation effort in network training does not represent a
disadvantage. The application of Mosaic reduces the size of
the target and therefore increases the detection efficiency of
smaller objects, which is a requirement to obtain applicable
results [53].

YOLOv5 employs the Focus, BottleneckCSP, SPP, and path
aggregation network (PANet) techniques to improve object
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4 STEFENON ET AL.

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 1 Structure of the proposed YOLOu-Quasi-ProtoPNet.

detection. Focus is applied to improve the receptive field, Bot-
tleneckCSP extracts the information from features, and SPP
separates the features that are relevant to improve the non-
linear representation of the network. PANet combines the high
and low-level features to enhance the accuracy detection, PANet
improvement is highlighted in red in Figure 1c.

For better accuracy, it is common to scale a baseline detec-
tor using a bigger backbone network. The EfficientDet method
[54], applied in YOLOv5, uses a bi-directional weighted fea-
ture pyramid network (BiFPN) for multiscale feature fusion and
a composite scaling strategy that uniformly scales the resolu-
tion of the network, hence it jointly scales all dimensions of
the backbone. The multiple depth is responsible for the depth
of the model, meaning that it ends up adding more layers to
the net, whereas the multiple width adds more filters to the
layers, thus it adds more channels to the outputs of the lay-
ers. The depth_width parameters are responsible for defining the
size of the network and creating the variations of the YOLOv5
models, these parameters will be evaluated here for proposing a
custom model.

The proposed personalized ultra-large version of YOLOv5,
named YOLOv5u emerged from the consideration that larger
models have better mAP results in preliminary experiments pre-
sented by Ultralytics.1 A progression in classification capability
is observed when increasing network size, for this reason, a
model larger than YOLOv5x seems promising, with YOLOv5x
having the best results compared to other models with fewer
parameters such as YOLOv5n, YOLOv5s, YOLOv5m, and
YOLOv5l. The results of these models are based on a pre-
trained dataset using the common objects in context (COCO)
[55]. Here, all these models were trained from scratch to have a
fair comparison.

The disadvantage of using an ultra-large model is that it
requires more powerful hardware, and has higher FLOPs, an
approach that results in higher computational effort and more
time needed for training. However, this is not a problem here,

1 https://github.com/ultralytics/yolov5

since the training is performed offline, and the model has high
speed in the testing phase. To create the YOLOv5u, the size
of the net was changed and evaluated based on the variation
of depth and width multiple, which is the variation performed
in other YOLOv5 versions. The cross-entropy loss function
is defined to calculate the score loss in object detection [56].
YOLOv5u creates a bounding box of the detected insulator
(Figure 1d) that is validated by its confidence, and the crop-
outs from it are made, these are the outputs of the YOLOv5u.
After object detection, the outputs are classified by the Quasi-
ProtoPNet model. For CNN models, a batch size multiple of 8
was used. The batch sizes were dependent on the base model,
the heavier the base model the smaller the batch size. VGG-
16, VGG-19, ResNet-34: batch size = 48, DenseNet-121: batch
size = 32, DenseNet-161: batch size = 24, ResNet-152: batch
size = 16.

3.2 Quasi-ProtoPNet

Quasi-ProtoPNet is a model based on the ProtoPNet approach
that uses prototypes to simulate human reasoning. Specifically,
Quasi-ProtoPNet uses only a positive reasoning process, plac-
ing a zero binding across similarity scores and misclassifications.
Quasi-ProtoPNet does not perform convex optimization of the
last layer to maintain constant connections, in other words, the
model does not freeze all other layers to optimize the last dense
layer [57].

Besides the positive reasoning process, Quasi-ProtoPNet
employs prototypes of all spatial dimensions, meaning rect-
angular and square spatial dimensions, while the ProtoPNet
models generally use prototypes having only square spatial
dimensions. Other models based on ProtoPNet are increas-
ingly being used, most notable are Semi-ProtoPNet [58],
Ps-ProtoPNet [59], Gen-ProtoPNet [60], and NP-ProtoPNet
[61]. The Gen-ProtoPNet uses a generalized version of the
Euclidean distance function, the NP-ProtoPNet considers
the negative reasoning process and the positive reasoning
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STEFENON ET AL. 5

process, but it emphasizes the negative reasoning process, and
the Ps-ProtoPNet equally considers both types of reasoning
processes and uses fixed connections between similarity scores
and logits.

Quasi-ProtoPNet has convolution layers of a base model
that are followed by two additional convolution layers, here
the VGG-16, VGG-19, ResNet-34, ResNet-152, DenseNet-
121, and DenseNet-16 are used as baselines. The convolutional
layers are denoted by L, and are followed by a generalized con-
volutional layer pt of prototypical parts. The pt layer is followed
by a dense w layer, without bias. The weight matrix of the dense
layer is, respectively, denoted by wm . In this structure, the L
convolutional layers are the non-interpretable part of the Quasi-
ProtoPNet (Figure 1e), while the pt forms the interpretable part
of the model (Figure 1f).

Quasi-ProtoPNet employs the generalized version of the
Euclidean distance function (d ). Since p is any prototype with
the shape 512 × h × w, wherein 1 ≤ h, w ≤ 6, and h and w
together are not equal to 1 nor 6. The model output (= L(x ))
of L has (7 − h)(7 − w) patches of dimensions h × w. There-
fore, the square of the distance is d (i j , p) between p and (i, j )
patch i j of  is given by:

d 2(i j , p) =
h∑

l=1

w∑
m=1

512∑
k=1

||(i+l−1)( j+m−1)k − plmk||22. (2)

If p has prototypes of spatial dimensions 1 × 1 (h = w = 1),

d 2(i j , p) =
512∑
k=1

||i jk − p11k||22, (3)

which is the Euclidean distance square between p and a patch of
, in which p11k ≃ pk. The prototypical unit pt computes

pt () = max
1≤i≤7−h, 1≤ j≤7−w

log

(
d 2(i j , p) + 1

d 2(i j , p) + 𝜖

)
. (4)

Thus,

pt (L(x )) = max
 ∈ patches(L(x ))

log

(
d 2( , p) + 1

d 2( , p) + 𝜖

)
. (5)

The Quasi-ProtoPNet is trained using two steps, the opti-
mization of all layers before the dense layers, and the projection
of prototypes [57]. Given X = {x1 … xn} and Y = {y1 … yn} are,
respectively, sets of images and labels, and

D = {(xi , yi ) ∶ xi ∈ X , yi ∈ Y }, (6)

the objective function of the Quasi-ProtoPNet is:

min
P , Lconv

1
n

n∑
i=1

CrosEnt(h◦pt◦L(xi ), yi ) + 𝜆ClstCost, (7)

FIGURE 2 Annotated images from the used dataset [63].

where the cluster cost (ClstCost) is given by:

ClstCost =
1
n

n∑
i=1

min
j∶p j∈Pyi

min
 ∈ patches(L(xi ))

d 2( , p j ). (8)

Considering x is an input image, the model projects proto-
types over patches of x which are more similar to the prototypes
[62]. Therefore, a patch of x is projected that is at a smaller
distance from a prototype, given the following update:

pc
j ⟵ arg min

{∶ ∈ patches(L(xi )) ∀i such that yi=c}
d ( , pc

j ).

3.3 Dataset

The used dataset was created by Lewis and Kulkarni [63], for
a competition with the goal of insulator defect detection. The
dataset has high-quality labeled images of transmission line insu-
lators, which contain four classes: insulators with flashover,
broken insulators, good insulators, and insulator chains. Since
the purpose of this paper is to classify the condition of insula-
tors (faulty and good), the insulator chain class was disregarded.
Some of the insulators from this database are shown in Figure 2.

The database contains high-resolution pictures of porcelain
insulator chains from power lines, on which the positions and
classes of insulators are noted according to bounding boxes
regarding the vertical and horizontal position and their condi-
tion. The images were recorded using digital single-lens reflex
cameras (DSLRs) during aerial inspections of the electrical
power grid. The DSLRs settings were adjusted according to
the need for brightness compensation, considering the use of
the Canon PowerShot G10, Nikon D810, and Nikon D90.
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6 STEFENON ET AL.

The dataset has 1596 images, wherein 1195 were used dur-
ing the training, and 401 for testing. The high-resolution
images are rescaled to 640 pixels on input to the model to
have standard images according to the training needs of the
presented architecture.

The cutouts considered for the classification task were 10,886
for training and 1941 for testing, divided as follows: Broken
class (train: 877, test: 191), flashover class (train: 1651, test: 288),
and good class (train: 8358, test: 1462). The cutouts have varying
resolutions according to the bounding boxes of the insulator.
After augmented data, the dataset has thirty times the origi-
nal number of images (broken: 26,310, flashover: 49,530, good:
250,740).

3.4 Experiment setup

The purpose of the present experiment is to compare object
detection and classification models to determine the best frame-
work for identifying insulator failures in transmission grids.
The measures of object detection performance here were pre-
cision, recall, F1-score, and mAP. The positive predictive value
(precision) and the sensitivity (recall) are given by:

Precision =
t p

tp+ f p
, (9)

Recall =
t p

tp+ fn
. (10)

These measures are obtained from the confusion matrix
considering the true positive (t p), false positive ( f p), and false
negative ( fn). From the precision and recall, the F1-score is
obtained, according to:

F1−score =
2 × Precision × Recall

Precision + Recall
. (11)

The intersection over union (IoU) determines when detec-
tion is considered a true positive. A detection of t p is defined by
IoU > T , in which T is a predefined threshold. Here, the valua-
tion is made by T equal to 0.5. To evaluate the object detection,
the mAP was used, given by:

mAP =
1
n

n∑
k=1

APk, (12)

where n is the number of classes and k is the corresponding
class. The average precision (AP) calculates a precision–recall
curve as the weighted average of the precision achieved for
each threshold.

The method proposed here was implemented using Python
language. To perform the training and comparative analysis, a
cluster was used, in which the following setup requirements
were allocated: A graphic processing unit (GPU) GeForce GTX
1080 Ti, and 64 GB of random access memory (RAM). This
hardware setup was used since it was sufficient to compute
all the experiments and thus facilitate reproducibility. To evalu-

ate the computational effort, floating-point operations (FLOPs)
are used.

For the object detection task, the nano, small, medium, large,
extra-large, and ultra-large versions of the YOLOv5, of which
are YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x,
and YOLOv5u are evaluated. These versions were based on
640-pixel images and the difference between them is the num-
ber of layers and parameters. These variations in size are given
by the depth and width multiple of the network. Especially
the ultra-large version is not available in Ultralytics models, the
YOLOv5u was created based on increasing both the layers and
the parameters of the network, this is a customized version
created here for comparison to the standard models.

All compared models presented here were trained from
scratch to have an equivalent condition for comparison. Since
the models were trained from scratch a maximum value of
10,000 epochs for training was defined, considering that in the
initial experiments, the models converged before 1000 epochs,
to improve the development of the analysis the early stopping
patience was used, in which the model ends the training if there
are 50 epochs without improvement.

4 RESULTS AND DISCUSSION

Whereas the proposed model uses a personalized ultra-large
version for object detection (YOLOv5u), the first analysis step
is to define the appropriate structure size of the network. At this
stage of the analysis, all annotated insulators are considered to
be of the same class, in view that YOLOv5u is used for object
detection, and Quasi-ProtoPNet is used specifically for classifi-
cation. The results of object detection concerning the variation
in the size of the network are presented in Table 1.

Since YOLOv5u is trained from scratch, it is needed to set
a higher maximum value of epochs, 10,000 here, which is con-
siderably more than the standard 300 epochs suggested in the
model’s original repository. Considering the used early stop cri-
teria, the compared models converged at close to 1000 epochs.
Here, the best results of comparative analyzes between models
of the same class are underlined and the best overall results are
highlighted in bold.

In this initial comparison, all the models were able to achieve
F1-score results above 0.97, which shows that the approach is
feasible for the application in question. As expected, the models
that have more parameters need more time to be computed due
to the higher computational effort required, which can also be
observed by the higher value of FLOPs.

The mAP@[0.5] was greater than 0.98 in all compared mod-
els, showing that object detection is successfully performed
using YOLOv5 in all its versions. Considering the F1-score
result the model that presented the best result was YOLOv5u
(1.50_1.67) using 465 layers and 158.5 million parameters. For
this reason, this structure has been defined as the standard
model for object detection, since at this stage of the analysis
all the insulators are considered equal because the objective of
the YOLOv5 model is to locate the components for further
classification by the Quasi-ProtoPNet model.
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STEFENON ET AL. 7

TABLE 1 Definition of structure for object detection.

mAP

Model depth_width Layers

Parameters

(M)

FLOPs

(G) Time (s) Precision Recall F1-score [0.5] [0.5:0.95]

YOLOv5n 0.33_0.25 213 1.9 4.5 27,884.0 0.98092 0.96806 0.97445 0.98757 0.84610

YOLOv5s 0.33_0.50 213 7.2 16.5 28,477.8 0.97797 0.97424 0.97610 0.98720 0.88088

YOLOv5m 0.67_0.75 290 21.2 49.0 38,551.6 0.97949 0.97372 0.97659 0.98492 0.89924

YOLOv5l 1.00_1.00 367 46.5 109.1 60,093.9 0.97526 0.97527 0.97526 0.98483 0.91291

YOLOv5x 1.33_1.25 444 86.7 205.7 74,945.3 0.98120 0.96815 0.97463 0.98271 0.91187

YOLOv5u 1.33_1.50 444 124.1 293.0 133,823.4 0.98110 0.97269 0.97688 0.98353 0.91191

1.50_1.50 465 127.4 307.2 139,318.1 0.97774 0.97311 0.97542 0.98333 0.91234

1.50_1.67 465 158.5 384.6 182,122.8 0.98057 0.97476 0.97765 0.98314 0.90545

1.67_1.67 521 179.7 431.9 190,239.1 0.97411 0.97476 0.97443 0.98260 0.91248

1.67_1.75 521 196.6 469.0 272,763.3 0.97375 0.97372 0.97373 0.98420 0.91679

The difference between the YOLOv5u (1.50_1.67) which
had the best F1-score result to the YOLOv5n, which
uses fewer parameters, was 0.0032. YOLOv5n had the best
mAP@[0.5] results, lower time to be computed, and higher
efficiency considering the FLOPs, however, it had the low-
est mAP@[0.5:0.95] value. This shows that depending on the
research objective, smaller models can have an acceptable F1-
score and even be better in some circumstances relative to
mAP@[0.5].

The time required for training increases when the model uses
more parameters, the difference between the model that used
a depth_width equal to 1.67_1.75 to the YOLOv5n was approx-
imately 10 times more time to complete the training. Although
the training time was higher, all models needed less than 3 ms to
process each image during the testing phase. This makes their
application in embedded systems promising since in the test-
ing phase the computational effort may be limited and a fast
response is required.

The output of the YOLOv5u model provides the posi-
tion of the insulator and based on an image cutout of where
the insulator is, the classification of the component is per-
formed. To perform an optimization on the structure of the
Quasi-ProtoPNet, the VGG-16, VGG-19, ResNet-34, ResNet-
152, DenseNet-121, and DenseNet-161 baselines are evaluated.
Table 2 shows the classification results using the Quasi-
ProtoPNet model considering this variation, and compares with
well-established models. In this evaluation, mAP values are not
presented as this metric is based on the IoU of object detec-
tion that was previously presented in Table 1 for the YOLOv5u
model. Therefore, Quasi-ProtoPNet is focused specifically on
the classification task.

The Quasi-ProtoPNet is superior to all compared models
using all backbone variations for the classification task pre-
sented here. Using the DenseNet-161 as the backbone, the
Quasi-ProtoPNet had an F1-score of 0.95165 being promising
for the classification of insulators. These results confirm that
using Quasi-ProtoPNet from the object detection performed
by YOLOv5u via a hybrid method defined as YOLOu-Quasi-

FIGURE 3 Testing images results: (a) Broken insulator; (b) Flashover
insulator.

ProtoPNet is a good strategy for the evaluation in question.
Figure 3 shows examples of results with inference images (not
used in training) using the proposed method.

In Figure 3a, a broken insulator is presented, and in Figure 3b
an insulator with a flashover over its surface is presented. These
failures are the most common to be identified in a power
grid inspection and are the focus of the application of the
proposed method.

4.1 Comparison to related studies

Serikbay et al. [64] using a starting CNN had an accuracy of
0.8907 in the testing phase. In this application only 1.38 MB of
memory was required, making this a promising solution to be
applied in an embedded system. Alahyari et al. [65] used a two-
stage model for both the segmentation and the detection tasks
of faulty insulators. The segmentation model achieved a total
of 78% accuracy, while the classifier obtained 92%. When the
data is unbalanced the accuracy may not be enough to determine
whether the model is having an acceptable classification result.

Zhang et al. [66] used a Fast R-CNN network to identify insu-
lator strings. Regarding the detection of the insulator strings, the
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8 STEFENON ET AL.

TABLE 2 Comparison of the Quasi-ProtoPNet with different baselines to well-established models.

Base Metric

Quasi-

ProtoPNet

[57]

Semi-

ProtoPNet

[58]

Ps-

ProtoPNet

[59]

Gen-

ProtoPNet

[60]

NP-

ProtoPNet

[61]

ProtoPNet

[62]

VGG-16 Precision 0.89552 0.67187 0.68749 0.56870 0.712499 0.75590

Recall 0.85714 0.23369 0.34591 0.30483 0.31232 0.28318

F1-score 0.87591 0.34677 0.46025 0.39691 0.43428 0.41201

VGG-19 Precision 0.95628 0.51464 0.71249 0.57419 0.57142 0.57516

Recall 0.86206 0.38317 0.31232 0.26567 0.31901 0.25882

F1-score 0.90673 0.43928 0.43428 0.36326 0.40944 0.35699

ResNet-34 Precision 0.95767 0.89893 0.88324 0.58139 0.85572 0.58778

Recall 0.88292 0.75446 0.77678 0.26041 0.77477 0.18075

F1-score 0.91878 0.82038 0.82660 0.35971 0.81323 0.27648

ResNet-152 Precision 0.94764 0.77725 0.74774 0.744075 0.76146 0.74999

Recall 0.89603 0.72246 0.75113 0.69162 0.73127 0.73008

F1-score 0.92111 0.74885 0.74943 0.71689 0.74606 0.73991

DenseNet-121 Precision 0.95897 0.89839 0.87570 0.77102 0.78095 0.71098

Recall 0.92118 0.74666 0.68281 0.72368 0.73214 0.57209

F1-score 0.93968 0.81553 0.76732 0.74660 0.75576 0.63402

DenseNet-161 Precision 0.96891 0.74404 0.68965 0.65868 0.68452 0.56544

Recall 0.93499 0.43554 0.42105 0.37414 0.40069 0.41221

F1-score 0.95165 0.54945 0.52287 0.47722 0.50549 0.47682

algorithm achieved an AP of 91.75% and a recall of 98%, and
accuracy of 98% for the classification task. Sadykova et al. [49]
used YOLOv2 to identify the string of insulators, and then a
classification model to analyze the insulator surface conditions.
The YOLOv2 model achieved an mAP above 98% for detect-
ing insulator strings and an F1-score of 0.95165. Showing that
even the most previous versions can be successfully used for the
presented task. Comparatively, the proposed method presented
here achieved similar values of F1-score and mAP, however
using high-resolution images.

In reference [53], an mAP of 0.99262 was achieved con-
sidering only the task of insulator identification, based on the
ResNet-18 classifier they have an F1-score result of 0.96216.
Based on ResNet-34 in reference [15] an accuracy of 0.9979 and
an F1-score of 0.9964 was achieved for a similar task. As can
be verified, authors who have used CNN-based models have
had promising results in fault identification, with the choice of
model and its fine-tuning depending on the used dataset.

4.2 Limitations

Quasi-ProtoPNet gives better performance than the series of
ProtoPNet models when classification is to be made over only
a few classes. If the number of classes is large then the perfor-
mance of the other ProtoPNet models may be better than the
Quasi-ProtoPNet. However, there are many cases similar to the
case of insulators discussed here when it is needed to classify

FIGURE 4 False positive classification samples.

images over only a few classes. Therefore, this model can be
really useful for such situations.

In the interpretable results, there were cases where Quasi-
ProtoPNet highlighted the variation in brightness intensity for
good insulators, these false positives are presented in Figure 4.

 17518695, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/gtd2.12886 by U

niversita D
i U

dine V
ia Pallad, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



STEFENON ET AL. 9

Considering that these images were classified as insulators in
good condition the interpretability should not be considered for
non-faulty insulators.

The final result has the accumulated error of the identifica-
tion based on YOLOv5u, therefore for the method to have
acceptable results, it needs to have the identification of the com-
ponents properly, since the classifier will not be able to classify
failures if the component is not identified.

5 FINAL CONSIDERATIONS

The proposal of using Quasi-ProtoPNet as a classifier instead
of using only YOLO had rewarding results, comparatively,
Quasi-ProtoPNet was superior in using different baselines to
all other compared models based on ProtoPNet, additionally,
YOLOv5u showed promise for object detection, hence the pro-
posed hybrid optimized YOLOu-Quasi-ProtoPNet excelled in
all comparisons for solving the problem presented here.

The use of YOLOv5 specifically for detecting insulators had
superior results to its use for identifying different conditions,
this means that the task of detecting these components may be
simpler than their classification. This result is reflected in electri-
cal grid inspections, where the insulator chain is easily identified,
even by people without specific training, but the identification
of a failure requires advanced training and knowledge of the grid
conditions. Numerically, all variations of the YOLOv5 model
had an F1-score higher than 0.97 and an mAP@[0.5] higher
than 0.98 for insulator detection, while the best results of these
models were an F1-score of 0.93986 and an mAP@[0.5:0.95]
of 0.87312 (depth_width of 1.33_1.50) when it was necessary to
identify the insulator condition, making it clear that the use of a
hybrid method for classification is a promising strategy.

Considering that several state-of-the-art models have been
evaluated and combined, in future work, it would be promising
to employ these models in embedded systems, where a spe-
cific device could indicate fault conditions to a maintenance
team in the field. This would support the correction of failures
that occur suddenly, thereby indicating adverse conditions for
a team to identify the failure and correct it more dynamically
when a shutdown occurs. The YOLO model is being explored
and improved over time, new versions have been made avail-
able such as YOLOv6, YOLOv7, and more recently YOLOv8.
Based on the promising results of using models larger than the
extra-large version of YOLO, it becomes interesting to further
increase the number of parameters of the model to obtain an
ultra-large version of the latest YOLO structures.
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