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An approach based on the extended quadrature method of moments (EQMOM) has been developed to solve the 
population balance equation written for the evolution of shrinking-core particles in transient leaching processes. 
It has been shown that the EQMOM can naturally address the dependency of the shrinkage-core model on the 
unreacted core size and outer size of particles. The approach has been validated by comparing its predictions 
with either analytical or reference solutions for several test cases. Moreover, the approach has been employed to 
simulate an experimental leaching process taken from the literature. The obtained results confirm the significance 
of considering the particle size distribution in the simulation of the leaching process, hence the importance of 
solution methods such as that presented in this work. Finally, it has been shown that the proposed approach is 
also useful for the simulation of the dissolution process with shrinking particles.
1. Introduction

A comprehensive description of the leaching process requires a mod-

elling tool capable to follow the evolution of particles when the parti-

cle size distribution (PSD) is not narrow enough to adopt mono-sized 
modelling approaches [1,2]. In this context, a systematic approach for 
taking into account the PSD is population balance modelling (PBM) 
[1,3–6], which essentially writes a population balance equation (PBE) 
in terms of the PSD. While the application of PBM to the leaching pro-

cess is well established, the solution methods applied to the PBE for 
this process still have some limitations. LeBlanc and Fogler [1] used the 
method of characteristics to solve a PBE for describing the dissolution 
of solid particles under mass-transfer and surface-reaction controlling 
regimes. Accordingly, the initial particle size distribution can have the 
form of either a log-normal or Rosin-Rammler (known also as Weibull) 
distribution. However, they assumed an excess solvent concentration 
that essentially remains constant over the entire process, which is not 
always the case. Hänchen et al. adopted the same approach to describe 
the dissolution of olivine particles with bi-modal initial distributions 
[7]. They assumed that the dissolution rate depends on neither the 
solution concentration nor the particle size. It is noteworthy that the 
above-mentioned approaches can be adopted to simulate the leaching 
process only if the process is controlled by the surface-reaction, i.e., the 
diffusion in the inert-layer and liquid film around particles is negligi-
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ble. Crundwell and Bryson [8] simulated a steady-state continuous zinc 
pressure leaching reactor by coupling the PBE with the mass and en-

ergy balances for the reactant concentration and reactor temperature, 
respectively. They derived a steady-state PBE for the number density of 
particles in terms of the particle size. Moreover, they assumed a gen-

eral shrinking-core kinetic model, and therefore, their method can be 
applied to cases other than surface-reaction rate limited cases. In their 
approach, the steady-state PBE is first integrated by the method of inte-

grating factors and then is solved numerically by using the trapezoidal 
integration with Richardson extrapolation. It is evident that the numeri-

cal integration requires the discretization of the size space, which is not 
a straightforward task, particularly when the size distribution is broad, 
or it has steep changes, or its shape changes significantly. Moreover, the 
solution method is not suitable for transient systems, e.g., batch reac-

tors. Another numerical method for the solution of the PBE in leaching 
applications is the method of lines [5,9], which can be applied to tran-

sient cases. Likewise, this method needs the discretization of the size 
space with the same shortcomings mentioned earlier. Gbor and Jia [2]

proposed a method to consider the PSD in the calculation of the conver-

sion for the leaching process, which essentially makes use of a function 
that defines the unreacted fraction of particles of a given size. How-

ever, they assumed a constant reactant concentration in the calculation 
of the conversion. Moreover, their method requires the division of the 
PSD into discrete sizes when the diffusion in the inert-layer around par-
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ticles is not negligible. Another common method for the solution of 
the PBE is the method of classes or sectional method [10]. Zhao et al. 
adopted this method to simulate the reactive dissolution of particle ag-

glomerates that undergo the breakage simultaneously [11]. In another 
work, Dale et al. used the sectional method to describe the aggregation 
and dissolution of nanoparticles [12]. However, the main disadvantage 
of this method is that a relatively large number of classes is required 
to achieve a satisfactory accuracy [13]. Moreover, to the best of our 
knowledge, no published work has adopted the method of classes with 
the shrinking-core kinetic model.

It is noteworthy that closed-form solutions for the leaching process 
are present in the existing literature, however, they lack generality. For 
instance, Giona et al. derived a closed-form solution for the PBE by 
assuming a large excess of the reactant [6]. In addition to the excess re-

actant assumption, their method requires the discretization of the size 
space if the dissolution kinetics is controlled by both the surface reac-

tion and mass-transfer in the boundary layer around particles.

In the present work, we propose a general approach to solve the PBE 
in transient leaching processes, which overcomes the previously men-

tioned shortcomings. In fact, it can be adopted to simulate the leaching 
process in spatially homogeneous batch reactors without making any 
assumption about the controlling regime or reactant concentration. The 
proposed approach is based on the extended quadrature method of mo-

ments (EQMOM) introduced by Yuan et al. [14], which is adapted to the 
shrinking-core model. This adaption is indeed a novelty of this work 
as it allows to consider both the (constant) distribution of the parti-

cle outer size and the (varying) distribution of the particle core size in 
evaluation of the shrinking-core model. After elaborating the approach, 
its advantages are verified by assessing its performance in several test 
cases, including a real experimental leaching problem. Additionally, it 
is shown that the proposed method is applicable to dissolution applica-

tions, i.e., cases with shrinking particles.

2. Population balance modelling of the leaching process

The central concept of PBM is the particle distribution function, 
𝑛(𝝃; 𝐱, 𝑡), known also as the number density function (NDF), which rep-

resents the distribution of a given population of particles over some 
properties of interest 𝝃 in a specific spatial position 𝐱 and time 𝑡. By 
definition, 𝑛𝑑𝝃𝑑𝐱 is the number of particles with properties between 𝝃
and 𝝃 + 𝑑𝝃 that are located at spatial position between 𝐱 and 𝐱 + 𝑑𝐱. 
Some examples of particle properties 𝝃 are size, velocity, concentration 
and temperature that in fact determine the particle state. In the popula-

tion balance literature, these properties are called internal coordinates, 
whereas the spatial position of particles, 𝐱, is called the external coor-

dinate. Moreover, the internal and external coordinates together form 
the particle phase space through which particles are transported with 
certain velocities or rates. In 3-dimensional problems with 𝑁𝜉 inter-

nal coordinates, the phase space has 𝑁𝜉 + 3 dimensions. This allows 
us to restate the definition of 𝑛(𝝃; 𝐱, 𝑡) as the number of particles per 
unit phase space. Now, the evolution of particles in the phase space can 
be described through a balance equation written in terms of 𝑛(𝝃; 𝐱, 𝑡), 
known as the PBE [15],

𝜕𝑛

𝜕𝑡
+∇𝐱 ⋅ (𝐔𝑛) + ∇𝝃 ⋅ (𝝃̇𝑛) =𝐵 −𝐷, (1)

where, the second and third terms on the left-hand side of Eq. (1) rep-

resent the transport of particles in the physical space by the particle 
velocity 𝐔 and in the state space by the rate 𝝃̇, respectively. 𝐵 and 𝐷
are the source terms that describe respectively the birth and death of 
particles due to discontinuous processes such as the aggregation and 
breakage of particles. The choice of internal coordinates and discon-

tinuous processes in Eq. (1) is problem-dependent, and therefore, we 
introduce the leaching process before adapting the PBE for it.

In the leaching process, solid particles are brought into contact with 
2

a solution containing a leaching agent A (usually an acid), which dis-
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Fig. 1. Shrinking-core model. The leaching agent A diffuses from the bulk solu-

tion to the particle surface, where the reaction occurs between A and the active 
material in the particle. As the reaction proceeds, an inert layer remains around 
the particle, and therefore, A needs to diffuse through this layer to reach the 
surface of the unreacted core of the particle, where the reaction can take place. 
𝑙 and 𝐿 are the core and outer size of the particle, respectively.

solve a target compound B in the solid phase. The reaction can be 
written as

A(l) + 𝑏B(s) dissolved products, (2)

where, the stoichiometric ratio 𝑏 defines the number of moles of B dis-

solved by one mole of A. A widely adopted approach for the description 
of the leaching process is the shrinking-core model that assumes the for-

mation of an inert layer of a solid product around particles due to the 
reaction. Therefore, each solid particle is considered as an unreacted 
core rich in B surrounded by an inert layer. At the beginning of the pro-

cess, solid particles are fully unreacted. As the reaction proceeds, the 
unreacted core shrinks and the thickness of the inert layer increases. 
Therefore, in general, the process can be viewed as three steps: 1) the 
diffusion of A in the liquid film around particles, i.e., from the bulk so-

lution to the particle surface, 2) the diffusion of A in the inert layer, 
3) the reaction between A and B at the surface of the unreacted core. 
The shrinking-core model, illustrated in Fig. 1, can be expressed math-

ematically by the following kinetic formula, as detailed by Levenspiel 
[16],

𝐺(𝑙, 𝑡) ≡ d𝑙
d𝑡

=
−2𝑏𝐶A

𝜌B

[
1
𝑘s

+ 1
2𝒟e

(𝑙 − 𝑙2∕𝐿) + 1
𝑘f

(𝑙∕𝐿)2
] . (3)

Essentially, Eq. (3) expresses the rate of change in particle (core) size as 
a thermodynamic driving force divided by the total resistance due to the 
surface reaction, diffusion of A in the inert layer, and mass transfer in 
the liquid film around particles. Here, 𝑙 and 𝐿 denote the core and outer 
size of the particle in meters, respectively (see Fig. 1). 𝐶A is the molar 
concentration of A in the bulk solution and 𝜌B the molar concentration 
of B in the solid particle. 𝑘s, 𝒟e and 𝑘f are the surface reaction rate 
(ms−1), effective diffusion coefficient of A in the inert layer (m2∕s), 
and the mass transfer coefficient in the liquid film around the particle 
(ms−1), respectively. In the shrinking-core model, the main property of 
particles is the core size, 𝑙. Moreover, the outer size of particles, 𝐿, is 
assumed constant, i.e., the outer layer is not dissolved. It is noteworthy 
that Eq. (3) can also be applied to dissolution problems, i.e., when no 
inert layer forms, by setting 𝑙 ≡ 𝐿, which cancels the contribution of 
the inert layer to the total resistance. In this case, 𝑙 refers simply to the 
particle size.

Returning to the PBE, we take 𝑙 as the only internal coordinate 
following the shrinking-core model. Moreover, the aggregation and 
breakage of particles is neglected since it is a common practice in the 
modelling of leaching processes. By using these assumptions and direct-

ing our attention to a spatially homogeneous batch reactor, Eq. (1) can 

be simplified as
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Table 1

List of non-dimensional variables, their corresponding di-

mensional variables, and their definitions.

Non-dimensional 
variable

Dimensional variable Definition

𝑙∗ 𝑙 (m) 𝑙∗ = 𝑙∕𝐿̄
𝑡∗ 𝑡 (s) 𝑡∗ = 𝑡∕𝜏
𝐺∗ 𝐺 (m/s) 𝐺∗ =𝐺𝜏∕𝐿̄
𝐺′∗ 𝐺′ (1/s) Eq. (15)

𝐶∗
A 𝐶A (mol/m3) 𝐶∗

A = 𝐶A∕𝐶0
A

𝑆∗ 𝑆 (mol/m3/s) 𝑆∗ = 𝜏𝑆∕𝐶0
A

𝜌∗B 𝜌B (mol/m3) 𝜌∗B = 𝜌B∕𝐶0
A

Table 2

List of variables in the transformed size domain, their 
corresponding variables in non-transformed size domain 
and their definitions.

Pair of variables Definition

Transformed domain Original domain

𝑙′ (-) 𝑙 (m) Eq. (7)

𝑓 ′ (-) 𝑓 (1/m) 𝑓 ′ = 𝑓d𝑙∕d𝑙′
𝐺′ (1/s) 𝐺 (m/s) Eq. (13)

𝜕𝑛

𝜕𝑡
+ 𝜕(𝐺𝑛)

𝜕𝑙
= 0 , (4)

where, 𝑛 ≡ 𝑛(𝑙; 𝑡) in units of 1∕m4 . The units of 𝑛 follow from the fact 
that the phase space is formed by three spatial coordinates and the par-

ticle (core) size with the dimension of length. It is important to remind 
the reader that 𝐺 depends in general on both 𝑙 and 𝐿, where the for-

mer has a varying distribution governed by Eq. (4) and the latter has a 
distribution that is constant in time. It will be explained later how the 
constant distribution of 𝐿 is considered in evaluation of 𝐺.

Moreover, as indicated by Eq. (3), 𝐺 can depend not only on 𝑙 but 
also implicitly on 𝑡 because 𝐶A can change in time as the reaction pro-

ceeds. Therefore, in general, Eq. (1) should be coupled with a balance 
equation for the concentration of A in the solution, which can be writ-

ten as

d𝐶A
d𝑡

= 𝑆 . (5)

The source term on the right-hand side of Eq. (5), 𝑆 , is the consumption 
rate of A due to the leaching reaction. It can be related to the change in 
the total concentration of B(s), which in turn, can be calculated through 
the change in the total volume of particle cores

𝑆 =
𝜌B
𝑏

d𝑉𝑐
d𝑡

= 𝑘𝑣
𝜌B
𝑏

d
d𝑡

∞

∫
0

𝑙3𝑛d𝑙 , (6)

with 𝑉𝑐 being the total volume of particle cores. 𝑘𝑣 denotes the shape 
factor, which is equal to 𝜋

6
on the assumption of spherical particles.

2.1. Dimensionless equations

Before introducing the solution method, we make the equations di-

mensionless. On one hand, it facilitates the numerical solution of the 
equations. On the other hand, we will use a version of the EQMOM that 
requires the transformation of the internal coordinate such that any 
arbitrary bounded interval gets projected onto the interval [0, 1]. To 
enhance understanding of the following derivations, Table 1 lists the 
non-dimensional variables and their corresponding dimensional vari-

ables. In addition, Table 2 shows the pairs of key variables in the 
transformed-size and original size domain.

Considering the size as the internal coordinate, its transformation is 
3

written as
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Fig. 2. The pseudo-NDF 𝑛̂(𝑙) (black dotted curve) versus NDF 𝑛(𝑙) (grey solid 
curve). The pseudo-NDF extends to the negative domain for numerical reasons 
without having any physical effect on the modelling of the leaching process.

𝑙′ =
𝑙 − 𝑙min(𝑡)

𝑙max(𝑡) − 𝑙min(𝑡)
, (7)

where, 𝑙′ denotes the transformed size, which is also non-dimensional. 
𝑙min(𝑡) and 𝑙max(𝑡) are the minimum and maximum bounds of the size, 
respectively. These bounds change over the time by

d𝑙min
d𝑡

=𝐺(𝑙min, 𝑡) ,
d𝑙max
d𝑡

=𝐺(𝑙max, 𝑡). (8)

For numerical reasons that will be made apparent in the subsequent sec-

tion, we allow the minimum bound to become non-physically negative. 
In other words, we allow the existence of particles with negative core 
sizes that, of course, do not contribute to the consumption of the leach-

ing agent. In the rest of this paper, we call particles with negative core 
size as “ghost” particles. Thus, we define a pseudo-NDF 𝑛̂ such that it 
overlaps the NDF 𝑛 on the positive size domain but also includes ghost 
particles. Fig. 2 illustrates an example of the pseudo-NDF in comparison 
to the NDF. It is noteworthy that at time 𝑡 = 0, we have 𝑛̂ = 𝑛. More-

over, in the case of 𝑛̂, the total number of particles remains constant in 
contrast to the case of 𝑛, where the total number of particles decreases 
as more and more particle cores are depleted completely by the leach-

ing reaction. The inclusion of negative sizes in the calculations requires 
us to modify 𝐺 such that its sign cannot become positive. In this work, 
we suggest to employ a decaying surface-reaction resistance with the 
same parameters used in the case of positive sizes, thus

𝐺(𝑙, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩

−2𝑏𝐶A

𝜌B

[
1
𝑘s

+ 1
2𝒟e

(𝑙 − 𝑙2∕𝐿) + 1
𝑘f

(𝑙∕𝐿)2
] , 𝑙 > 0

−2𝑏𝐶A𝑘s
𝜌B

exp(𝑐d𝑙∗), 𝑙 ≤ 0

(9)

where, 𝑐d is an adjustable coefficient and 𝑙∗ = 𝑙∕𝐿̄. Here, 𝐿̄ is the length 
scale, which is defined as the initial average particle size. The above 
modification guarantees that once the unreacted core of a particle dis-

appears, it cannot be (unphysically) brought into existence. Moreover, 
the exponential function is included as a decaying factor to prevent ex-

cessive decrease of 𝑙min. In other words, it controls the broadness of the 
pseudo-NDF in the negative domain, which can be helpful in cases with 
negligible surface-reaction resistance, as discussed in the next section. 
It should be noted that the modified expression for 𝐺 remains continu-

ous at 𝑙 = 0.

Eq. (8) can be expressed in dimensionless form as

d𝑙∗min
d𝑡∗

=𝐺∗(𝑙min, 𝑡) ,
d𝑙∗max
d𝑡∗

=𝐺∗(𝑙max, 𝑡), (10)

with 𝑡∗ = 𝑡∕𝜏 and 𝐺∗ = 𝐺𝜏∕𝐿̄. Here, 𝜏 denotes the time scale, which 
is defined as the time required to completely leach a particle of size 𝐿̄
with 𝐶A being constant and equal to the initial concentration of A (𝐶0

A), 
hence

𝜌B
[
𝐿̄ 𝐿̄2 𝐿̄

]

𝜏 =

2𝑏𝐶0
A

𝑘s
+

12𝒟e
+

3𝑘f
. (11)
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For writing the dimensionless PBE, we first define a pseudo-PSD as 
𝑓 (𝑙; 𝑡) = 𝑛̂(𝑙; 𝑡)∕𝑚̂0, with 𝑚̂0 = 𝑚0||𝑡=0. Here, 𝑚0||𝑡=0 is the initial num-

ber density of particles (1∕m3). In fact, it is the first moment of the 
initial NFD as defined later in Eq. (17). As mentioned previously, 𝑚̂0
(in contrast to 𝑚0) does not change in time because by definition, the 
pseudo-NDF also includes the (ghost) particles with a depleted core. 
In other words, 𝑚̂0 is conserved whereas 𝑚0 is not. Next, we define a 
non-dimensional distribution 𝑓 ′(𝑙′; 𝑡) in terms of the transformed size 
𝑙′, which is related to 𝑓 by 𝑓 ′d𝑙′ = 𝑓d𝑙. It is important to keep in mind 
that 𝑙′ is always between 0 and 1, as defined in Eq. (7), irrespective of 
the sign of 𝑙. In other word, 𝑓 ′(𝑙′) is always a density function defined 
on the bounded interval [0, 1]. Then, we write the following balance 
equation for 𝑓 ′

𝜕𝑓 ′

𝜕𝑡
+ 𝜕(𝐺′𝑓 ′)

𝜕𝑙′
= 0 , (12)

where,

𝐺′ ≡ d𝑙′
d𝑡

=
(
𝜕𝑙′

𝜕𝑙

)
𝑡

d𝑙
d𝑡

+
(
𝜕𝑙′

𝜕𝑡

)
𝑙

= 1
𝑙max − 𝑙min

[
𝐺 − 𝑙′

(
d𝑙max
d𝑡

−
d𝑙min
d𝑡

)
−

d𝑙min
d𝑡

]
.

(13)

Since 𝐺 is continuous in 𝑙, then 𝐺′ is also continuous in 𝑙′.
Finally, multiplying Eq. (12) by the timescale (𝜏) yields the follow-

ing dimensionless PBE

𝜕𝑓 ′

𝜕𝑡∗
+ 𝜕(𝐺′∗𝑓 ′)

𝜕𝑙′
= 0 , (14)

with,

𝐺′∗ = 𝜏𝐺′ = 1
𝑙∗max − 𝑙∗min

[
𝐺∗ − 𝑙′

(d𝑙∗max
d𝑡∗

−
d𝑙∗min
d𝑡∗

)
−

d𝑙∗min
d𝑡∗

]
. (15)

Starting from Eq. (5), the dimensionless balance equation for the 
concentration of A becomes

d𝐶∗
A

d𝑡∗
= 𝑆∗ , (16)

where, 𝐶∗
A = 𝐶A∕𝐶0

A and 𝑆∗ = 𝜏𝑆∕𝐶0
A.

3. Solution approach for population balance equation

As introduced earlier, we adopt the EQMOM for the solution of 
Eq. (4), which was developed by Yuan et al. [14]. This method belongs 
to a family of solution methods known as quadrature-based moment 
methods (QBMM), which essentially solve for the (low-order) moments 
of the NDF, 𝑚𝑘, instead of solving the PBE directly. In this work, the 
moments of the NDF are defined by

𝑚𝑘(𝑡) =

∞

∫
0

𝑙𝑘𝑛(𝑙; 𝑡)d𝑙, (17)

with 𝑘 being the moment order. It is noteworthy that the importance of 
the low-order moments lies in the fact that they are linked with some 
measurable quantities of the particle population. For instance, by defi-

nition, 𝑚0 is the number density of particles, 𝑘𝑣𝑚3 the particle volume 
fraction, and 𝑚3∕𝑚2 the Sauter mean diameter.

Considering the dimensionless form of equations derived in the pre-

vious section, we continue the discussion by defining the moments of 
𝑓 ′

𝑚̂′
𝑘
(𝑡) =

1

∫
0

𝑙′
𝑘
𝑓 ′(𝑙′; 𝑡)d𝑙′, (18)

where, the lower limit of the integration is 𝑙′ = 0 corresponding to 
4

𝑙 = 𝑙min. As mentioned in the previous section, 𝑙min is allowed to take 
Chemical Engineering Science 292 (2024) 119987

negative values for numerical reasons. This means that the integration 
in Eq. (18) considers all particles including ghost ones, i.e., those with 
already depleted cores, whereas the lower limit in Eq. (17) is 𝑙 = 0.

Applying the above moment transformation to the PBE defined in 
Eq. (14) leads to an integro-differential equation for the moment of 
order 𝑘 as follows

d𝑚̂′
𝑘

d𝑡∗
+ 𝑙′

𝑘
𝐺′∗(𝑙′)𝑓 ′(𝑙′)|||10 −

1

∫
0

𝑘𝑙′
(𝑘−1)

𝐺′∗(𝑙′)𝑓 ′(𝑙′)d𝑙′ = 0. (19)

Now we can exploit the advantage of allowing negative sizes and 
working with the transformed size 𝑙′ defined in Eq. (7). According to 
Eq. (15), 𝐺′∗ is zero at both ends of the interval [0, 1], i.e., 𝑙′ = 0 and 
𝑙′ = 1 corresponding to 𝑙 = 𝑙min and 𝑙 = 𝑙max, respectively. As a result, 
the second term on the left-hand side of Eq. (19) is zero. In fact, if we 
were to treat the moments of the NDF defined by Eq. (17), this term 
would not be cancelled in the corresponding equation of the zero-order 
moment [17,18], and it would be required to know the value of the 
NDF at size zero. Of course, this is not an issue in the EQMOM method, 
as it was developed by Yuan et al. [14] to make a continuous approxi-

mation of the NDF such that its values at the origin could be calculated. 
In fact, the simplification of Eq. (19) is not the main reason for using 
the transformed variable 𝑙′ (which is devised to let 𝑙 take negative val-

ues) in our formulation of the EQMOM, but we will show that a better 
reconstruction of the NDF can be obtained by this formulation.

In general, Eq. (19) written for a set of moments presents a closure 
problem because it involves the (unknown) distribution 𝑓 ′. The QBMMs 
cope with this closure problem by approximating the distribution with 
a quadrature [19]. In the case of the EQMOM, the quadrature is defined 
as a summation of some weighted kernel density functions (𝛿𝜎 ). Here, 
we write the quadrature for 𝑓 ′

𝑓 ′(𝑙′) =
𝑁q∑
𝑖=1

𝑤′
𝑖
𝛿𝜎(𝑙′; 𝑙′𝑖 ), (20)

where, 𝑤′
𝑖

and 𝑙′
𝑖

are the weight and abscissa of each kernel, respec-

tively. 𝑁q is the number of kernels used for the approximation. Here, 
the kernels are of the same family, with a common parameter 𝜎. The 
choice of the kernel type is problem-dependent. Moreover, they should 
satisfy several conditions for being appropriate to the EQMOM [14]. 
Among different kernels reported in the relevant literature [14,20,21], 
we restrict our attention to the beta distribution because it is suitable 
for variables bounded to a finite interval, such as the particle core size 
in the leaching process. In fact, real particle samples have usually some 
minimum and maximum initial sizes. In addition, in applications such 
as the leaching and dissolution (ignoring also the particle aggregation), 
the particle (core) size decreases in time. And therefore, in such appli-

cations, it is legitimate to represent the PSD by a distribution with a 
bounded support. In this work, the beta kernels are

𝛿𝜎(𝑙′; 𝑙′𝑖 ) =
𝑙′𝜆𝑖−1(1 − 𝑙′)𝜇𝑖−1

(𝜆𝑖, 𝜇𝑖) , (21)

with 𝜆𝑖 = 𝑙′
𝑖
∕𝜎 and 𝜇𝑖 = (1 − 𝑙′

𝑖
)∕𝜎, which is equivalent to set the mean of 

the distribution equal to the kernel abscissa (𝑙′
𝑖
). In Eq. (21), (𝜆𝑖, 𝜇𝑖) is 

the beta function. It should be noted that the beta distribution is defined 
for 𝑙 ∈ [0, 1], which explains the reason behind the choice of coordinate 
transformation in Eq. (7).

In the core of the EQMOM, there is an inversion algorithm that cal-

culates the parameters of the quadrature in Eq. (20), i.e., 𝜎, 𝑤′
𝑖

and 
𝑙′
𝑖
, from a set of 2𝑁q + 1 solved moments, which addresses the closure 

problem of moment equations. Thus, once 𝑁q is set, Eq. (19) should 
be written for the moments of order 0 to 2𝑁q. It should be emphasized 
that in this work, the EQMOM inversion algorithm is applied to the 
moments of 𝑓 ′ that is defined on the positive bounded domain [0, 1].

We adopt the EQMOM inversion algorithm developed by Nguyen et 

al. [22]. It is a more robust and efficient version of the original EQMOM 
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inversion algorithm developed by Yuan et al. [14]. Moreover, it can 
cope with the realizability issue of moments that will be discussed later.

Let us now continue with the solution of the moment equations by 
inserting Eq. (20) into Eq. (19), which yields

d𝑚̂′
𝑘

d𝑡∗
−

𝑁q∑
𝑖=1

𝑤′
𝑖

1

∫
0

𝑘𝑙′
(𝑘−1)

𝐺′∗(𝑙′)𝛿𝜎(𝑙′; 𝑙′𝑖 )d𝑙
′ = 0. (22)

Considering the beta kernel, the integral in Eq. (22) can be estimated 
by using Gauss-Jacobi integration formula [23] on the interval [−1, 1], 
thus

1

∫
0

𝑘𝑙′
(𝑘−1)

𝐺′∗(𝑙′)𝛿𝜎(𝑙′; 𝑙′𝑖 )d𝑙
′

= 𝑘

(𝜆𝑖, 𝜇𝑖)
1

∫
0

𝑙′
(𝑘−1)

𝐺′∗(𝑙′)𝑙′𝜆𝑖−1(1 − 𝑙′)𝜇𝑖−1d𝑙′

= 𝑘

2(𝛼𝑖+𝛽𝑖)(𝜆𝑖, 𝜇𝑖)
1

∫
−1

(
𝑥′ + 1
2

)(𝑘−1)
𝐺′∗(𝑥

′ + 1
2

)(1 − 𝑥′)𝛼𝑖 (1 + 𝑥′)𝛽𝑖d𝑥′

≈ 𝑘

2(𝛼𝑖+𝛽𝑖)(𝜆𝑖, 𝜇𝑖)
𝑁𝑖∑
𝑗=1

𝑤′
𝑖,𝑗

(
𝑥′
𝑖,𝑗

+ 1

2

)(𝑘−1)

𝐺′∗(
𝑥′
𝑖,𝑗

+ 1

2
),

(23)

where the integral bounds are modified from [0, 1] to [−1, 1] by a 
change of variable, 𝑙′ = 𝑥′ + 1

2
. In Eq. (23), 𝛼𝑖 = 𝜇𝑖 − 1 and 𝛽𝑖 = 𝜆𝑖 − 1. 

Moreover, 𝑥′
𝑖,𝑗

and 𝑤′
𝑖,𝑗

denote the abscissas and weights of the Gauss-

Jacobi quadrature, respectively. The reader can find an algorithm to 
calculate them elsewhere [23]. These abscissas and weights integrate 
exactly a polynomial of order 2𝑁𝑖 − 1 multiplied by (1 − 𝑥′)𝛼𝑖 (1 + 𝑥′)𝛽𝑖
over the interval of [−1, 1]. Therefore, if 𝐺′∗ is a polynomial of order 
2𝑁G or less, then the Gaussian quadrature rule in Eq. (23) is exact for 
𝑁𝑖 ≥ 𝑁q +𝑁G. Otherwise, 𝑁𝑖 can be chosen large enough (indepen-

dently from the value of 𝑁q) to make the error of the quadrature rule 
negligible in comparison to the error due to the first quadrature for 𝑓 ′, 
i.e., Eq. (20), [14].

Now, the moment equations can be written as follows

d𝑚̂′
𝑘

d𝑡∗
−

𝑁q∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝑘𝜍′
𝑖,𝑗
𝑙′
𝑖,𝑗

(𝑘−1)
𝐺′∗(𝑙′

𝑖,𝑗
) = 0, (24)

with

𝜍′
𝑖,𝑗

= 1
2(𝛼𝑖+𝛽𝑖)(𝜆𝑖, 𝜇𝑖)𝑤

′
𝑖
𝑤′
𝑖,𝑗
, 𝑙′

𝑖,𝑗
=
𝑥′
𝑖,𝑗

+ 1

2
. (25)

As noted by Yuan et al. [14], a useful observation is that the second 
term on the left-hand side of Eq. (24) can be equivalently obtained by 
approximating 𝑓 ′ with the point representation

𝑓 ′(𝑙′) =
𝑁q∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝜍′
𝑖,𝑗
𝛿(𝑙′; 𝑙′

𝑖,𝑗
), (26)

instead of Eq. (20). Here, 𝛿(𝑙′; 𝑙′
𝑖,𝑗
) are Dirac delta functions centred on 

the abscissas 𝑙′
𝑖,𝑗

. It is important to keep in mind that the weights and 
abscissas in Eq. (26) are related to both quadratures introduced earlier, 
i.e., Eq. (20) and Eq. (23). By using the above point representation, the 
dimensionless PBE, Eq. (14), can be solved by the method of character-

istics [14] as follows

d𝜍′
𝑖,𝑗

d𝑙′
𝑖,𝑗
5

d𝑡∗
= 0 and

d𝑡∗
=𝐺′∗(𝑙′

𝑖,𝑗
). (27)
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Therefore, the application of the EQMOM to the hyperbolic PBE in 
Eq. (14) is reduced to a set of ordinary differential equations written 
in terms of the weights 𝜍′

𝑖,𝑗
and abscissas 𝑙′

𝑖,𝑗
. This approach has a ma-

jor advantage in dealing with the shrinking-core model, Eq. (3), which 
depends on the outer particle size 𝐿. When a mono-sized approach is 
adopted, 𝐿 is the same for all particles, hence no difficulty in the evalu-

ation of 𝐺. However, when the modelling approach considers the PSD, 
𝐿 also has a distribution, which is the same as the initial PSD. There-

fore, the evaluation of 𝐺 requires a method to map a given (evolving) 
particle core size to the corresponding particle outer size, which corre-

sponds to the initial value of the core size itself. In the present work, 
this mapping is done automatically when solving the initial-value prob-

lems in Eq. (27), because the value of 𝐿 for the abscissas 𝑙′
𝑖,𝑗

is related 
to their (known) initial conditions. To explain further, one can think 
of a given abscissa 𝑙′

𝑖,𝑗
moving along its corresponding characteristic 

curve with a rate determined by the shrinking-core model, which de-

pends on its corresponding value of 𝐿. Since 𝐿 = 𝑙|𝑡=0, the value of 𝐿
for abscissas is indeed related to their initial conditions, which in turn 
is computed from the initial particle size distribution. In this way, as 
mentioned previously, the polydispersity of particles is considered fully 
in the modelling framework, i.e., a varying distribution for 𝑙 and a con-

stant initial distribution for 𝐿.

Another important observation is that the weights 𝜍′
𝑖,𝑗

are constant 
over time, and therefore, 𝑚̂′

0 is conserved as defined in Eq. (28). Thus, 
since 𝑚̂0 = 𝑚̂′

0 following the definition of 𝑓 ′ (i.e., 𝑓 ′d𝑙′ = 𝑓d𝑙), it can 
be concluded that the conservation of 𝑚̂0 is automatically respected in 
this numerical solution approach. We remind the reader that some of 
the previous and following derivations depend on the fact that 𝑚̂0 is a 
conserved quantity.

It is noteworthy that the continuous representation of 𝑓 ′, i.e., 
Eq. (20), can be reconstructed by first, calculating the moments of 𝑓 ′

from the point representation,

𝑚̂′
𝑘
(𝑙′) =

𝑁q∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝜍′
𝑖,𝑗
(𝑙′
𝑖,𝑗
)𝑘, (28)

and then obtaining the parameters of the quadrature in Eq. (20), i.e., 
𝜎, 𝑤′

𝑖
and 𝑙′

𝑖
, by the EQMOM inversion algorithm described in the work 

of Nguyen et al. [22]. It is important to remind the reader that in this 
work, the EQMOM inversion algorithm is applied to the moments of 
𝑓 ′, which is a density function defined over the interval [0, 1]. It should 
be mentioned that Eq. (28) is obtained by substituting Eq. (26) into 
Eq. (18), and therefore, 𝑁𝑖 should be always larger than 𝑁q + 1 to have 
the integration be exact for the moments up to order 2𝑁q. Combining 
this constraint on 𝑁𝑖 with the previous one, we have 𝑁𝑖 ≥ max(𝑁q +
𝑁G, 𝑁q + 1).

Once a continuous 𝑓 ′(𝑙′) is reconstructed, the NDF can be obtained 
easily. First, the pseudo-PSD 𝑓 (𝑙) can be computed by using the defini-

tion of 𝑓 ′, i.e., 𝑓 ′d𝑙′ = 𝑓d𝑙, and Eq. (7). Then, the pseudo-NDF 𝑛̂(𝑙) is 
calculated by 𝑛̂ = 𝑚̂0𝑓 . Finally, the NDF 𝑛(𝑙) is simply the part of 𝑛̂(𝑙)
located in the positive size domain. In fact, as demonstrated in the next 
section, this procedure for the reconstruction of the NDF is indeed the 
main advantage of our proposed formulation of the EQMOM in terms of 
a transformed variable (𝑙′) that allows 𝑙 to take negative values, which 
in turn is required for the idea of the pseudo-PSD shown in Fig. 2.

Moreover, the moments of the NDF (𝑚𝑘) can be calculated by using 
the fact that 𝑛 is the same as the pseudo-NDF 𝑛̂ for 𝑙 ≥ 0, thus

𝑚𝑘 =

∞

∫
0

𝑙𝑘𝑛(𝑙)d𝑙 = 𝑚̂0

𝑙max

∫
max(𝑙min ,0)

𝑙𝑘𝑓 (𝑙)d𝑙. (29)

The last integral can be expressed in terms of the non-dimensional 

distribution 𝑓 ′ and transformed size 𝑙′ as follows
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𝑚𝑘 = 𝑚̂0

1

∫
max(0,−𝑙min∕Δ𝑙)

(𝑙′Δ𝑙 + 𝑙min)𝑘𝑓 ′d𝑙′

= 𝑚̂0𝐿̄
𝑘

1

∫
max(0,−𝑙∗min∕Δ𝑙

∗)

(𝑙′Δ𝑙∗ + 𝑙∗min)
𝑘𝑓 ′d𝑙′,

(30)

with Δ𝑙 = 𝑙max − 𝑙min and Δ𝑙∗ = 𝑙∗max − 𝑙∗min. By using the Gauss-Jacobi 
quadrature, we obtain

𝑚𝑘 = 𝑚̂0𝐿̄
𝑘

𝑁q∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝜍′
𝑖,𝑗
(𝑙′
𝑖,𝑗
Δ𝑙∗ + 𝑙∗min)

𝑘𝐼[max(0,−𝑙∗min∕Δ𝑙
∗),1](𝑙′𝑖,𝑗 ) , (31)

where 𝐼 is an indicator function that returns 1 for 𝑙′
𝑖,𝑗

∈ [max(0, −𝑙∗min∕
Δ𝑙∗), 1] and 0 elsewhere, and therefore, only the positive part of the 
pseudo-NDF (which corresponds to the NDF) is used for the calculation 
of 𝑚𝑘. In other words, the integration in Eq. (31) is calculated by us-

ing those 𝑙′
𝑖,𝑗

that locate in the interval [max(0, −𝑙∗min∕Δ𝑙
∗), 1], i.e., the 

interval that corresponds to the positive size. However, the more is the 
progress of the leaching reaction, the less is the number of abscissas 
in this interval. Therefore, 𝑁𝑖 should be large enough to increase the 
accuracy of the integration in the entire duration of the process. This 
point should be considered over the criteria mentioned previously for 
𝑁𝑖, because even if the integration over the full support (i.e., includ-

ing also the ghost particles) can become exact with a certain number of 
quadrature points (for instance, as in the case of a polynomial 𝐺), the 
calculation of 𝑚𝑘 might still lack enough accuracy. Nevertheless, the 
criteria introduced previously for 𝑁𝑖 can be considered as sufficient in 
most cases, particularly when the absolute values of the moments are 
not needed. We will elaborate more about the choice of 𝑁𝑖 in the Result 
and Discussion Section.

3.1. Coupling the EQMOM with the concentration balance

As mentioned in the previous section, the concentration of the leach-

ing agent 𝐶A in the solution is governed by Eq. (16), which is coupled 
with the PBE through the source term 𝑆∗. Here, we explain the cal-

culation of 𝑆∗ by starting from its definition reported in the previous 
section. Thus, we have

𝑆∗ = 𝜏𝑆

𝐶0
A

= 𝜏

𝐶0
A

𝜌B
𝑏

d𝑉𝑐
d𝑡

= 𝑘𝑣𝜏
𝜌∗B
𝑏

d
d𝑡

∞

∫
0

𝑙3𝑛d𝑙 = 𝑘𝑣𝜏
𝜌∗B
𝑏

d𝑚3
d𝑡

, (32)

with 𝜌∗B = 𝜌B∕𝐶0
A. The last equality follows from the definition of the 

moments of the NDF in Eq. (17), which can be applied to the PBE in 
Eq. (1) to obtain

d𝑚3
d𝑡

+ 𝑙3𝐺(𝑙)𝑛(𝑙)|||∞0 −

∞

∫
0

3𝑙2𝐺(𝑙)𝑛(𝑙)d𝑙 = 0. (33)

The second term on the left-hand side of Eq. (33) is zero at both ends of 
the interval. Furthermore, by definition, the pseudo NDF 𝑛̂ is the same 
as the NDF 𝑛 for 𝑙 ≥ 0, thus

d𝑚3
d𝑡

=

∞

∫
0

3𝑙2𝐺(𝑙)𝑛(𝑙)d𝑙 = 3𝑚̂0

𝑙max

∫
max(𝑙min ,0)

𝑙2𝐺(𝑙)𝑓 (𝑙)d𝑙. (34)

By making 𝑓 and 𝑙 dimensionless, we obtain

d𝑚3 = 3𝑚̂0

1

(𝑙′Δ𝑙 + 𝑙min)2𝐺(𝑙′Δ𝑙 + 𝑙min)𝑓 ′d𝑙′ (35)
6

d𝑡 ∫
max(0,−𝑙min∕Δ𝑙)
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= 3
𝑚̂0𝐿̄

3

𝜏

1

∫
max(0,−𝑙∗min∕Δ𝑙

∗)

(𝑙′Δ𝑙∗ + 𝑙∗min)
2𝐺∗(𝑙′Δ𝑙 + 𝑙min)𝑓 ′d𝑙′.

The argument to 𝐺∗ is intentionally left dimensional because 𝐺∗ is re-

lated to 𝐺, which in turn depends on the dimensional size. Substituting 
Eq. (35) in Eq. (32) and using the Gauss-Jacobi quadrature, we obtain

𝑆∗ =3𝑘𝑣𝑚̂∗
0

𝜌∗B
𝑏

𝑁q∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝜍′
𝑖,𝑗
(𝑙′
𝑖,𝑗
Δ𝑙∗ + 𝑙∗min)

2𝐺∗(𝑙′
𝑖,𝑗
Δ𝑙 + 𝑙min)𝐼[max(0,−𝑙∗min∕Δ𝑙

∗),1](𝑙′𝑖,𝑗 ) ,

(36)

with 𝑚̂∗
0 = 𝑚̂0𝐿̄

3. The indicator function 𝐼[max(0,−𝑙∗min∕Δ𝑙
∗),1] guarantees 

that the ghost particles with negative core size do not contribute to the 
leaching reaction.

3.2. Calculation steps, implementation and computational demand

In summary, we integrate a system of dimensionless ordinary-

differential equations comprised of Eqs. (10), (16) and (27) to obtain 
the change of 𝜍′

𝑖,𝑗
, 𝑙′

𝑖,𝑗
, 𝑙∗min, 𝑙∗max and 𝐶∗

A over time. For this purpose, the 
calculation steps are as follows.

1. Given an initial NDF 𝑛0 bounded to the interval [𝑙0min, 𝑙
0
max], com-

pute 𝑚̂0 = 𝑚0||𝑡=0 by using Eq. (17) and then calculate 𝑓 ′|||𝑡=0 =
Δ𝑙0 𝑛

0

𝑚̂0
2. Set the number of nodes 𝑁q for the EQMOM quadrature

3. Compute the first 2𝑁q moments of 𝑓 ′ by Eq. (18)

4. Apply the EQMOM inversion algorithm introduced by Nguyen et 
al. [22] to obtain 𝜎|𝑡=0, 𝑤′

𝑖

|||𝑡=0 and 𝑙′
𝑖

|||𝑡=0
5. For each EQMOM quadrature node, compute 𝛼𝑖||𝑡=0 and 𝛽𝑖||𝑡=0 and 

set the number of points for the Gaussian quadrature rule, i.e., 𝑁𝑖

6. Obtain the abscissas 𝑥′
𝑖,𝑗

|||𝑡=0 and weights 𝑤′
𝑖,𝑗

|||𝑡=0 of the Gauss-

Jacobi quadrature for each EQMOM quadrature node by using 
𝛼𝑖
||𝑡=0, 𝛽𝑖||𝑡=0 and 𝑁𝑖

7. Calculate 𝜍′
𝑖,𝑗

|||𝑡=0 and 𝑙′
𝑖,𝑗

|||𝑡=0 from 𝑤′
𝑖

|||𝑡=0, 𝑤′
𝑖,𝑗

|||𝑡=0 and 𝑥′
𝑖,𝑗

|||𝑡=0 as 
defined in Eq. (25)

8. Integrate Eqs. (10), (16) and (27) from 𝑡 = 0 to 𝑡 = 𝑡f with the initial 
conditions 𝜍′

𝑖,𝑗

|||𝑡=0, 𝑙′
𝑖,𝑗

|||𝑡=0, 𝑙∗min
|||𝑡=0, 𝑙∗max

||𝑡=0 and 𝐶∗
A
|||𝑡=0

It should be mentioned that the derivatives of 𝑙′
𝑖,𝑗

, 𝑙∗min and 𝑙∗max de-

pend on 𝐺(𝑙, 𝑡), which in turn requires to know the corresponding outer 
size (𝐿), for which a constant distribution should be taken into account. 
As mentioned previously, the distribution of the outer size (𝐿) is the 
same as the distribution of the core size (𝑙) at time zero. Therefore, for 
each 𝑙′

𝑖,𝑗
, we have 𝐿𝑖,𝑗 = 𝑙′

𝑖,𝑗

|||𝑡=0 (𝑙0max − 𝑙0min) + 𝑙0min, see Eq. (7). Instead, 
for 𝑙∗min and 𝑙∗max, the outer size 𝐿 is equal to their initial conditions mul-

tiplied by 𝐿̄, i.e., 𝐿min = 𝑙∗min
|||𝑡=0 𝐿̄ = 𝑙0min and 𝐿max = 𝑙∗max

||𝑡=0 𝐿̄ = 𝑙0max.

Regarding the implementation, a Python code is developed to per-

form the above calculation steps. It includes a general class for the 
EQMOM with several functions aimed at inverting the set of moments 
to find the weights, abscissas and the parameter 𝜎 of the quadrature. 
Moreover, it has a method for returning the point representation of the 
NDF given a set of moments, and also a method for evaluating the re-

constructed NDF. The EQMOM is implemented as a general class so 
that it can be instantiated for each test case studied in the following 
section. In fact, each test case is coded in a separate Python script that 
1) pre-processes the initial NDF and sets the required parameters, e.g., 
those of the shrinking-core model; 2) instantiate an EQMOM class for 

the selected 𝑁q and 𝑁𝑖; 3) integrates in time the dimensionless equa-



M. Shiea, L. Crema and E.G. Macchi

tions for the abscissas, concentrations, and bounds of the NDF by using 
the ordinary differential equation (ODE) solver of Scipy package, i.e., 
solve_ivp; 4) post-process the integration results and visualize them. The 
developed codes and the first studied test case are uploaded to a public 
repository [24].

Concerning the computational demand of the proposed approach, 
we restrict our attention to the solution of (tens to hundreds) ordinary 
differential equations as the most time-consuming calculation. The com-

putational time of this calculation mainly depends on the stiffness of 
the problem (i.e., time-scale of the mechanisms in the shrinking-core 
model), process duration and ODE integration method. Among these 
factors, the stiffness of the problem has the largest effect. Thus, as long 
as the equations are not excessively stiff, the simulation time is not 
a matter of concern. Still one might be concerned about the compu-

tational time if one aims at coupling the proposed approach with the 
computational fluid dynamics (CFD), however, such a coupling is not 
feasible with the current formulation of the EQMOM adapted to the 
shrinking-core model. In fact, the description of the diffusion and con-

vection of the fluid in a CFD simulation coupled with the EQMOM 
is done through the moments (not the weights and abscissa of the 
quadrature). As a result, the blending of the moments of cells in a CFD 
simulation by the diffusion and convection causes the loss of mapping 
between the distribution of the core size (𝑙) and the distribution of the 
outer size (𝐿), which is an essential aspect of the proposed approach to 
consider both distributions in evaluation of the shrinking-core model. 
Nevertheless, in this work, our focus is on spatially homogeneous stirred 
reactors, which is a valid assumption for the leaching process described 
by the shrinking-core model, because the time-scale of the mixing in a 
stirred reactor is presumably shorter than those of the mechanisms in 
the shrinking-core model.

3.3. Realizability issue

The realizability issue of moments is an important aspect of the QB-

MMs that deserves special discussion. Briefly, in the numerical solution 
of the PBE by moment-based methods, a set of predicted moments might 
assume certain values that cannot belong to any physical distribution, 
and therefore, inversion algorithms fail to find a quadrature approxima-

tion of the underlying NDF from that set of (non-realizable) moments. 
A more rigorous explanation employs the concept of the moment space, 
which is a convex space formed by all the possible moment sets (of a 
certain size denoted by 𝑁m) of all the possible positive measures that 
can be defined on a particular support, e.g., [0, 1] as in this work. Then, 
a given moment set is realizable if and only if it belongs to the moment 
space. Here, our aim is just to mention the concept of the moment space, 
which determines bounds on admissible values for moments, without 
discussing it in detail. A full discussion of the realizability issue and 
moment space is out of scope of this work, and can be found elsewhere 
[14,20,22,25–28].

While the realizability of moments is often a significant issue in spa-

tially non-homogeneous simulations [18,25–28], it can also occur in 
spatially homogeneous systems, e.g., a leaching process in a well-stirred 
reactor. In the latter case, non-realizable moments might be predicted 
due to numerical errors such as those related to the numerical integra-

tion of equations. Moreover, the transport in the phase space can take 
the moment set close to the boundary of the moment space, which can 
create numerical difficulties.

Regarding the numerical integration, one can try to employ a more 
accurate integration method or tighten tolerances of the solver to de-

crease numerical errors as much as possible. In this work, the selection 
of integration tolerances, particularly the absolute ones, is an easy task 
since the variables are made non-dimensional with predictable order 
of magnitude. The only exception is 𝑙∗min that can assume large negative 
values, however, its maximum order of magnitude can still be estimated 
7

a priori.
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Concerning the realizability of moments, we should first remind the 
reader that in the approach proposed here, the EQMOM inversion algo-

rithm is not needed during the integration of the governing equations 
in Eq. (10), Eq. (16) and Eq. (27), since Eq. (27) is written in terms of 
the quadrature parameters. In fact, the inversion of moments is done 
only once before starting the integration of the governing equations to 
obtain the initial value for the quadrature parameters, and then, the in-

tegration is performed until the final time without requiring to reuse 
the EQMOM inversion algorithm, i.e., the integration continues regard-

less of any potential realizability issue. Once the system of the ODEs 
is solved, the NDF at a selected time can be obtained by computing 
the moments 𝑚̂′

𝑘
(𝑙′) and then reconstructing 𝑓 ′ from the moment set 

by using the EQMOM inversion algorithm, as explained earlier. This re-

construction fails if the computed moment set is non-realizable. In this 
case, the EQMOM inversion algorithm attempts to perform the recon-

struction with a subset of the moment set that belongs to the moment 
space, i.e., disregarding high-order moments unless the moment set be-

comes realizable. This realizable subset of moments can be identified by 
examining the canonical moments since in this work, we deal with the 
Hausdorff moment problem, i.e., moment problem on the support [0, 1]. 
Briefly, in the Hausdorff moment problem, a set of moments belongs to 
the interior of the moment space if the associated canonical moments lie 
in the interval (0, 1). The reader can find more information about canon-

ical moments elsewhere [20,27,29]. Furthermore, as mentioned before, 
we employ the EQMOM inversion algorithm by Nguyen et al. [22] that 
was developed to deal with the boundary of the moment space. There-

fore, it is expected that the adopted solution approach proves robust if 
a problematic moment set is predicted.

4. Results and discussion

In this section, we assess the proposed method by performing several 
numerical tests for which some analytical or reference solutions can be 
obtained. In addition, the method is used to simulate a leaching process 
for which some experimental data is available. Finally, we show that 
the method can be also applied to dissolution problems in which no 
inert layer forms around particles.

In all the following cases, the reaction is the one reported in Eq. (2). 
In addition, particles are assumed spherical, thus 𝑘𝑣 = 𝜋∕6. Moreover, 
the number of quadrature nodes (𝑁q) is set to more than three follow-

ing the suggestion by Yuan and co-workers who found that the EQMOM 
with three or four nodes provides accurate predictions for the moments 
of the NDF for evaporation, in which the growth rate is negative as in 
leaching. The only exception is the third test case “Varying Concentra-

tion” with a uniform initial particle size distribution, where only two 
nodes are deliberately used in the EQMOM for the reason that is ex-

plained in the corresponding part. Regarding the ODE solver, a variant 
of Petzold’s method [30] is used that switches automatically between 
(non-stiff) Adams and (stiff) backward differentiation formulas. This 
method is available in Scipy package by selecting the LSODA option of 
solve_ivp solver. Furthermore, the relative and absolute tolerances of the 
ODE solver and the initial time step is set to 10−6, 10−8 and 0.001, re-

spectively. These settings for the ODE solver lead to fast simulations of 
the following test cases, except the last one, i.e., dissolution controlled 
by liquid-film mass-transfer, that takes a bit longer due to the stiffness 
of the equations, as explained later.

4.1. Surface-reaction rate limited case

The first case is a leaching process controlled by the surface-reaction 
rate, in other words, negligible mass-transfer resistance in the inert 
layer and liquid film around particles. Under these conditions, Eq. (9)

reduces to 𝐺 = −2𝑏𝑘s𝐶A∕𝜌B. Here, no decaying factor is considered for 
negative-size particles because all particles shrink with the same rate. 

Moreover, we assume that 𝐶A is constant, i.e., A is present in excess. 
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Fig. 3. The comparison of the dimensionless PSD predicted by the EQMOM 
against the analytical solutions at four selected times for shrinking-core particles 
in the surface-reaction controlling regime.

Therefore, 𝐺 does not change over time. In this extreme case, the ex-

pected behaviour is that the PSD shifts with a constant rate to smaller 
values of particle size without changing its shape.

To perform the simulation, the initial NDF is assumed to have the 
form of a truncated log-normal distribution [15] as follows

𝑛0(𝑙) =
𝑚0||𝑡=0

ln𝜎0
𝑔

√
2𝜋

. exp

⎛⎜⎜⎜⎜⎜⎜⎝
−

{
ln

[
(𝑙 − 𝑙0min)(𝑙

0
max − 𝑙0min)

(𝑙0max − 𝑙)𝑙0
𝑔

]}2

2(ln𝜎0
𝑔
)2

⎞⎟⎟⎟⎟⎟⎟⎠
, (37)

where 𝑙0min and 𝑙0max are the bounds of the initial distribution. As 𝑙0min → 0
and 𝑙0max →∞, Eq. (37) reduces to the log-normal distribution with 𝑙0

𝑔

and 𝜎0
𝑔

being the geometric mean and geometric standard deviation, 
respectively [15]. In this first case, 𝑙0min = 0.45 μm, 𝑙0max = 30 μm, 𝑙0

𝑔
=

10 μm and 𝜎0
𝑔
= 2.5, which are very close to those reported by LeBlanc 

and Fogler [1] for the dissolution of Mn2O3. It should be mentioned 
that we use 𝑙0

𝑔
as the length-scale, thus 𝐿̄ = 𝑙0

𝑔
.

LeBlanc and Fogler [1] showed that Eq. (4) can be solved an-

alytically by the method of characteristics for the dissolution pro-

cess (shrinking particles) in the surface-rate limiting regime, provided 
that the reacting solution contains a large excess amount of A. Since 
shrinking-core particles (as in the leaching process) behave the same 
as shrinking particles (as in the dissolution process) under the surface 
reaction controlling regime [16], we can use their approach to obtain 
the analytical solution for our case. The only difference is that here the 
variable is the size of particle core. By assuming that the initial PSD is 
a truncated log-normal distribution, LeBlanc and Fogler [1] derived an 
analytical solution for Eq. (4) in terms of the non-dimensional distribu-

tion 𝜙∗ = 𝐿̄𝑛∕ 𝑚0||𝑡=0, 𝑙∗ and 𝑡∗. The advantage of these dimensionless 
variables is that the solution is independent of the individual values for 
𝑚0||𝑡=0, 𝑘s, 𝐶0

A, 𝜌B and 𝑏 as long as the concentration of A is excess 
enough to remain constant.

Fig. 3 compares the results obtained by the EQMOM versus the 
analytical solutions at four selected times. As expected, the non-

dimensional PSD shifts to the left without changing the shape as the 
reaction proceeds. The EQMOM results are obtained by setting 𝑁q = 3, 
which is large enough to match the quadrature approximation with the 
initial PSD satisfactorily, as depicted by the blue curve in Fig. 3. More-

over, since 𝐺 is constant and independent of the core size, 𝑁𝑖 = 4 for 
𝑖 ∈ 1,2,3 should suffice. In fact, Fig. 3 shows a very good agreement be-

tween the analytical solutions and EQMOM predictions at the selected 
8

times.
Chemical Engineering Science 292 (2024) 119987

Fig. 4. The relative error of the first seven moments, i.e., 𝑘 ∈ 0,1,… ,6 for 
𝑁𝑖 = 4 (top) and 𝑁𝑖 = 10 (bottom), where 𝑁𝑖 is the number of points of the 
Gaussian-Jacobi quadrature.

A supplementary insight can be obtained by comparing the pre-

dicted moments with the analytical ones. For this purpose we use the 
following expression

𝑚𝑘,error =
|||𝑚𝑘,predicted −𝑚𝑘,analytical

|||
𝑚𝑘,analytical

. (38)

The top graph in Fig. 4 shows the error defined by Eq. (38) for the 
first seven moments when 𝑁𝑖 = 4. It is interesting that the error for all 
the moments increases as we advance in time, i.e., as more and more 
particles are leached. In fact, at 𝑡∗ = 4.0, the error for some moments, 
in particular 𝑚0, increases considerably. This might seem paradoxical 
because we observe a very good agreement between the predicted and 
analytical PSDs in Fig. 3, even at 𝑡∗ = 4.0. In fact, as explained in the 
previous section, the NDF is obtained by taking the part of the pseudo-

NDF located in the positive side of the size domain, and this pseudo-NDF 
is reconstructed by using all the abscissas 𝑙′

𝑖,𝑗
regardless of the time, 

which results in satisfactory predictions for the PSD, as shown in Fig. 3. 
However, as we advance in time, more and more abscissas exit the valid 
domain for the calculation of the moments of the NDF, see Eq. (31), and 
this has an adverse effect on the accuracy of the numerical integration 
in Eq. (31) to obtain moments. Indeed, by increasing the number of 
abscissas to ten, the accuracy of the predicted moments by Eq. (31) can 
be improved greatly, as shown by the bottom graph in Fig. 4 and also in 
Fig. S1(b) of the Supplementary Material. It should be mentioned that 
this argument is made to clarify better the effect of 𝑁𝑖 on the moment 
values calculated by Eq. (31)) when they are sought, otherwise, 𝑁𝑖 = 4
suffices to obtain a good accuracy for the predicted PSD in this test case.

4.2. Mixed controlling regimes

Here, we consider a problem similar to the previous case with the 

same initial NDF except that the mass-transfer resistance in the inert 
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layer is not negligible. In this case, we assume an identical timescale 
for both the surface reaction and mass-transfer through the inert layer, 
which yields 𝑘s∕𝒟e = 1.2 × 106 given that 𝐿̄ = 10−5 m. Likewise, the 
concentration of A is assumed constant, i.e., A is supplied in excess 
amount. Moreover, no decaying factor is considered in Eq. (9), i.e., 𝑐d =
0.

To our knowledge, no analytical solution exists for the evolution of 
the PSD in the case of mixed controlling regimes, and therefore, we can 
only discuss qualitatively the EQMOM predictions for the PSD. How-

ever, the conversion of B, 𝑋B, can be calculated with the method used 
by Gbor and Jia [2], which we use as a reference solution for assessing 
the EQMOM predictions.

Here, we briefly explain the method to obtain the reference solution 
for 𝑋B. At a given time 𝑡, the unreacted fraction of particles of outer 
size 𝐿, 𝑔(𝐿, 𝑡), is known by integrating Eq. (3) from time 0 to 𝑡. It is 
evident that 𝑔(𝐿, 𝑡) varies between 1 and 0. Moreover, the contribution 
of particles of outer size 𝐿 to the cumulative conversion is proportional 
to their mass fraction, which in turn is known from the initial mass-

based PSD. If 𝐶A is constant and the leaching process is controlled by 
both the surface reaction and inert layer diffusion, then 𝑔(𝐿, 𝑡) can be 
obtained by [31][
1 − 3[𝑔(𝐿, 𝑡)]2∕3 + 2𝑔(𝐿, 𝑡)

]
+

12𝒟e
𝑘s𝐿

[
1 − [𝑔(𝐿, 𝑡)]1∕3

]
=

24𝑏𝒟e𝐶A

𝜌B𝐿
2 𝑡, if 𝐿>𝐿c(𝑡) (39)

with

𝐿c(𝑡) = −
6𝒟e
𝑘s

+

√(
6𝒟e
𝑘s

)2
+

24𝑏𝒟e𝐶A
𝜌B

𝑡, (40)

where, particles with outer size less than 𝐿c are already leached com-

pletely, i.e., 𝑔(𝐿, 𝑡) = 0. Finally, 𝑋ref
B can be expressed as

𝑋ref
B (𝑡) = 1 −

𝑙0max

∫
max(𝑙0min ,𝐿c)

𝑔(𝐿, 𝑡)𝑓 0
v (𝐿)d𝐿, (41)

where, 𝑓 0
v (𝐿) denotes the initial PSD (on a volume-size basis), which 

can be obtained from the initial NDF (which is on a number-size basis) 
as follows

𝑓 0
v (𝐿) =

𝑛0(𝐿)𝐿3

∫ 𝑙0max
𝑙0min

𝑛0(𝐿)𝐿3d𝐿
. (42)

In the EQMOM, the conversion of B can be calculated by noting that

1 −𝑋B(𝑡) =
volume of unreacted cores at time 𝑡

initial volume of particles
=

∫ ∞
0 𝑙3𝑛(𝑙; 𝑡)d𝑙

∫ ∞
0 𝑙3𝑛0(𝑙)d𝑙

.

(43)

The integrals in the denominator and numerator of Eq. (43) are the 
third moment of the NDF at time 0 and 𝑡, respectively. The former can 
be computed from the initial (known) NDF. The latter, instead, is cal-

culated by using the EQMOM quadrature approximation for the NDF 
together with the Gauss-Jacobi quadrature rule, as previously detailed 
for the calculation of the source term of the concentration balance equa-

tion, which yields

∞

∫
0

𝑙3𝑛d𝑙 = 𝑚̂∗
0

𝑁q∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝜍′
𝑖,𝑗
(𝑙′
𝑖,𝑗
Δ𝑙∗ + 𝑙∗min)

3𝐼[max(0,−𝑙∗min∕Δ𝑙
∗),1](𝑙′𝑖,𝑗 ) . (44)

Fig. 5 depicts the EQMOM predictions for 𝜙∗(𝑙∗) at four times. The 
EQMOM predictions are obtained by employing a five-node quadrature 
for the approximation of the NDF. In addition, we set 𝑁𝑖 = 10 for the 
9

Gaussian quadrature rule, which is larger than the constraint introduced 
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Fig. 5. Time evolution of the dimensionless PSD predicted by the EQMOM 
for shrinking-core particles with a shrinkage rate that depends on the surface-

reaction and mass-transfer in the inert layer.

Fig. 6. The comparison of the leaching conversion predicted by the EQMOM 
against the reference solution obtained by the method proposed by Gbor and 
Jia [2]. The shrinkage rate of particle cores depends on the surface-reaction and 
mass-transfer in the inert layer.

in the previous section since the shrinkage rate is not a polynomial. The 
first observation is that by increasing the number of nodes with re-

spect to the previous test case (i.e., from three to five), the EQMOM 
approximation for the initial 𝜙∗(𝑙∗) matches perfectly the initial trun-

cated log-normal distribution, though it is a marginal improvement with 
respect to the previous test case. As time passes, the distribution shifts 
to the left and additionally its peak shrinks down. This is an expected 
behaviour as reported elsewhere for the dissolution of particles under 
mixed controlling regimes [6].

As a quantitative evaluation, Fig. 6 shows a perfect agreement be-

tween the conversion of B predicted by the EQMOM at four selected 
times with the reference solution calculated by Eq. (41). This agree-

ment supports the PSD predictions by the EQMOM in Fig. 5. Moreover, 
it shows that the integrals involving 𝐺 can be calculated by using the 
Gaussian quadrature rule even when 𝐺 is not a polynomial. Although 
in this case, a larger number of points have been used to achieve an 
acceptable accuracy.

4.3. Varying concentration

In the previous studied cases, we assumed that an excess amount 
of the leaching agent A existed in the solution, and therefore, its con-

centration did not change with time. This assumption was adopted to 
simplify the problems such that an analytical or a reference solution 
could be obtained for the sake of comparison. Now, we consider a case 
with a varying concentration of the leaching agent. In addition, we 

assume that the particles are distributed uniformly between 𝑙0min and 
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𝑙0max. Let us set these limits to 0 and 30 μm, respectively. In addition, 
the length-scale 𝐿̄ is set to the average particle size, thus 𝐿̄ = 15 μm. 
Furthermore, we assume that the leaching process is controlled by the 
surface reaction, and therefore, 𝐺 does not depend on the core and 
outer size of the particle although it changes over time due to varia-

tions in the concentration of A.

The choice of a uniform initial distribution and the assumption of 
surface-reaction controlling regime allow us to obtain a reference solu-

tion which in turn, can be used to provide a quantitative evaluation of 
the predictions. As mentioned earlier, in the case of the surface-reaction 
controlling regime, the initial NDF shifts to smaller sizes without chang-

ing the shape. Thus, assuming 𝑙0min = 0, we have

𝑛(𝑙; 𝑡) =
⎧⎪⎨⎪⎩
𝑚0||𝑡=0
𝑙0max

, 0 < 𝑙 ≤ 𝑙max(𝑡)

0, 𝑙 > 𝑙max(𝑡)
, (45)

or in terms of non-dimensional variables,

𝜙∗(𝑙∗; 𝑡∗) =
⎧⎪⎨⎪⎩

1
𝑙∗max

||𝑡=0 , 0 < 𝑙∗ ≤ 𝑙∗max(𝑡
∗)

0, 𝑙∗ > 𝑙∗max(𝑡
∗)

. (46)

Therefore, the problem of computing 𝜙∗ reduces to finding 𝑙∗max(𝑡
∗) by 

Eq. (10), which requires 𝐺∗, which in turn depends on 𝐶A or equally 
its non-dimensional form, 𝐶∗

A. In addition, 𝐶∗
A is governed by Eq. (16), 

which depends on 
d𝑚3
d𝑡

. By using Eqs. (17) and (45), we obtain the 
following relation

d𝑚3
d𝑡

= d
d𝑡

∞

∫
0

𝑙3𝑛d𝑙 =
𝑚0||𝑡=0
𝑙0max

d
d𝑡

𝑙max(𝑡)

∫
0

𝑙3d𝑙 =
𝑚0||𝑡=0
𝑙0max

d𝑙max(𝑡)
d𝑡

[𝑙max(𝑡)]3,

(47)

where, the last equality is derived by using the Leibniz integral rule 
[32].

Now by using Eqs. (10), (16), (32) and (47) and making variables 
non-dimensional, we can write the following system of ordinary differ-

ential equations for 𝑙∗max and 𝐶∗
A

d𝑙∗max
d𝑡∗

= −𝐶∗
A

d𝐶∗
A

d𝑡∗
= −𝑘𝑣

𝜌∗B
𝑏
𝐶∗
A

𝑚̂∗
0

𝑙∗max
||𝑡=0 [𝑙∗max(𝑡)]

3,

(48)

which can be solved by an initial-value problem solver to obtain a ref-

erence solution.

Fig. 7 depicts the time evolution of the non-dimensional PSD ob-

tained by the EQMOM. In addition, Fig. 8 compares the values of 𝐶∗
A

predicted by the EQMOM to its variation obtained by solving Eq. (48). 
As in the previous cases, the results are expressed in terms of the 
non-dimensional variables, 𝜙∗, 𝑙∗, 𝑡∗, and 𝐶∗

A, therefore, they are in-

dependent of the selected value for 𝑘s. However, they still depend on 
𝑚0||𝑡=0, 𝜌∗B and 𝑏 as indicated by Eq. (48). The results shown in Figs. 7

and 8 are obtained by setting them to 5 × 1013, 5 and 1, respectively. 
Regarding the number of quadrature points, it is noteworthy that one 
beta kernel, Eq. (21) is enough to represent exactly a uniform distri-

bution (𝑙′1 = 𝜎 and 𝜎 = 1∕2) [14]. Likewise, the size dependency of the 
summation of two beta kernels, Eq. (21), can vanish by setting 𝑙′1 = 𝜎, 
𝑙′2 = 2𝜎 and 𝜎 = 1∕3. In fact, this can be extended to the summation of 
any number of beta kernels. Therefore, we can choose any positive in-

teger for 𝑁q. However, we intentionally adopt a two-node quadrature 
for this case, i.e., 𝑁q = 2, for reasons to be given later. Accordingly, we 
set 𝑁𝑖 = 3 for both quadrature nodes since 𝐺 does not depend on the 
10
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Fig. 7. Time evolution of the dimensionless PSD predicted by the EQMOM for 
shrinking-core particles in the surface-reaction controlling regime and under a 
varying concentration of the leaching agent.

Fig. 8. The dimensionless concentration of the leaching agent predicted by the 
EQMOM against the reference solution obtained by Eq. (48) for shrinking-core 
particles in the surface-reaction controlling regime.

As expected, the initial uniform distribution shifts to the left with 
time. However, contrary to the first studied case, it shifts with a rate 
that slows down as the reaction proceeds, which is associated to the de-

crease in the concentration of A as shown in Fig. 8. Another observation 
is that the shape of the predicted PSDs in Fig. 7 remains uniform at later 
times, which demonstrates an improvement over the results presented 
in the original work by Yuan et al. [14] on the development of the 
EQMOM. In fact, they studied an evaporation problem with an initial 
uniform distribution and a constant shrinkage rate by using a four-node 
quadrature, i.e., 𝑁q = 4, as they intended to evaluate the error when 
𝑁q > 1. In that case, the EQMOM did not predict the exact uniform dis-

tribution, and instead four peaks (attributed to each quadrature node) 
appeared in the predicted size distribution. However, they showed that 
the problem could be alleviated by increasing the number of points 
of the Gauss-Jacobi quadrature, although the rippling pattern still per-

sisted to exist. In contrast, in the present work, the uniform shape is 
maintained through the course of the simulation despite the fact that 
𝑁q > 1. This superior reconstruction of the NDF is indeed attributed 
to the use of the pseudo-NDF, see Fig. 2, which requires to consider 
ghost particles (i.e., particles with negative core size) in the calcula-

tions, which in turn is achieved by formulating the EQMOM in terms of 
the transformed variable 𝑙′, as detailed in the previous section.

In addition, the comparison between the EQMOM predictions and 
the reference solution for 𝐶∗

A shows a perfect agreement, which verifies 
the calculations, and in particular the integrals, done in the EQMOM.

Concerning the accuracy of the predictions for the individual mo-
ments, we can likewise make the same argument about 𝑁𝑖 as that we 
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presented previously in the first studied test case. In fact, it is expected 
that 𝑁𝑖 = 3 is not sufficient to obtain accurate results for the individ-

ual moments by Eq. (31) in spite of the perfect predictions for the PSD. 
In line with this expectation, Fig. S3(a) of the Supplementary Material 
shows that the accuracy of the predictions for 𝑚0 diminishes in time. 
However, Fig. S3(b) of the Supplementary Material shows that the ac-

curacy of the predicted 𝑚0 is improved considerably by increasing 𝑁𝑖 to 
ten, as it results in a more accurate numerical integration in Eq. (31), as 
explained earlier. Again, we emphasize that here our aim of increasing 
𝑁𝑖 is to show its effect on the predicted moments obtained by Eq. (31)

if their individual values are needed. Otherwise, as shown in Figs. 7

and 8, 𝑁𝑖 = 3 is enough to obtain a good accuracy for the predicted 
PSD and solution concentration.

4.4. Leaching example

After previous numerical analyses, we use the EQMOM to simulate 
a real leaching experiment conducted by Yoon et al. [33]. They studied 
the leaching of neodymium (Nd) from the oxidized E-scrap of NdFeB 
magnets in H2SO4 solutions according to the following reaction [33]

3 H2SO4 +Nd2O3 Nd2(SO4)3 + 3 H2O. (49)

In the conducted experiments, they measured the conversion of Nd (de-

noted by 𝑋B) versus time at some selected H2SO4 concentrations and 
temperatures. Moreover, they used excess amounts of H2SO4, and there-

fore, 𝐶A is assumed to be constant.

According to their observations, the shrinking-core model can be 
used to describe the process because the initial particle size distribu-

tion differs only slightly from that measured after the completion of 
the leaching. By assuming that the diffusion in the inert layer controls 
the leaching process, they used the following relation in terms of 𝑋B
to obtain an apparent rate constant for the diffusion, 𝑘d (1/min) at the 
investigated conditions

1 − 3(1 −𝑋B)2∕3 + 2(1 −𝑋B) = 𝑘d𝑡, and 𝑘d =
8𝒟e𝐶A

𝜌B𝐿
2 (50)

It should be highlighted that the above relation is valid for mono-sized 
particles and a constant concentration of 𝐶A. Finally, they estimated 
an apparent activation energy by plotting 𝑘d versus temperature for 
selected concentrations of A, which was found to be relatively low. In 
this way, they justified their assumption about the controlling step of 
the process.

Contrary to the mono-sized approach adopted by Yoon et al. [33], 
we take into account the polydispersity of particles with the help of the 
EQMOM. Indeed, this allows to highlight the importance of consider-

ing the PSD in the modelling of the leaching process. For this purpose, 
we use the measured conversion data for one of the experimental con-

ditions investigated by Yoon et al. [33], 𝐶A = 3 M and 𝑇 = 30 °C. In 
addition, we extract the particle size distribution plotted in figure 6 
of their work. It is noteworthy that they reported the volume percent 
versus particle size, and therefore, the extracted data is converted to a 
number-based density distribution before being used in the EQMOM. In 
addition, based on the experimental PSD, 𝑙0min and 𝑙0max are set to 0.26
and 100 μm, respectively.

Since no information is provided for 𝒟e and 𝜌B by Yoon et al. [33], 
the shrinking-core model is modified as follows

𝐺(𝑙, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩

−𝐿̄[
𝜏r +

6𝜏d
𝐿̄

(𝑙 − 𝑙2∕𝐿)
] , 𝑙 > 0

−𝐿̄
𝜏r

exp(𝑐d𝑙∗), 𝑙 ≤ 0

(51)

where, 𝜏r =
𝜌B𝐿̄

2𝑏𝐶A𝑘s
and 𝜏d =

𝜌B𝐿̄
2

24𝑏𝐶A𝒟e
with 𝑏 = 1∕3. Comparing the 
11

definition of 𝜏d with that of 𝑘d in Eq. (50) yields 𝜏d = 𝑘−1d . Although the 
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Fig. 9. The conversion of the leaching process predicted by the EQMOM (solid 
red and dashed green curves) against the experimental values (black squares) 
reported by Yoon et al. [33]. The agreement between the EQMOM predictions 
and the experimental data can be improved by modifying the mass-transfer 
time-scale obtained by Yoon et al. [33] via a mono-sized modelling approach.

diffusion in the inert layer is the controlling step, we include a negli-

gible surface-reaction resistance (𝜏r ≪ 𝜏d) to avoid numerical issues at 
small sizes (𝑙 → 0). Here, we set 𝜏r∕𝜏d = 10−4 that is small enough to 
have no effect on the results. Moreover, since the surface-reaction re-

sistance is negligible, 𝑐d is adjusted to 10 in order to control the width 
of the pseudo-PSD as explained in the previous section. We have found 
that 𝑐d = 10 is a good choice to avoid an excessive decrease of 𝑙min. 
Lastly, 𝐿̄ is set to 9.4 μm, which is the mean diameter of particles re-

ported by Yoon et al. [33].

For the quadrature approximation of the PSD, we use 4 nodes, i.e., 
𝑁q = 4. And for the Gauss-Jacobi quadrature, we employ 𝑁1 = 100 and 
𝑁2 = 𝑁3 = 𝑁4 = 10. The reason behind choosing a large number of 
Gaussian quadrature points for the first node, i.e., 𝑁1 = 100, is to obtain 
a smooth profile for the predicted moments, particularly the moment of 
order zero (see Fig. S4 of the Supplementary Material). It is noteworthy 
that Yuan et al. [14] also employed large number of Gaussian quadra-

ture points for the first and second nodes to improve the accuracy of 
predictions in the case of evaporation, i.e., size shrinkage.

Fig. 9 compares the predicted conversion of Nd obtained by using 
two different values of 𝜏d against the measured data. The red curve 
in Fig. 9 is predicted by using 𝜏d = 2987 min, which corresponds to 
𝑘d = 3.348 × 10−4 as reported by Yoon et al. for the selected exper-

imental condition [33]. The discrepancy between this curve and the 
measurements can be attributed to the employed 𝜏d, and therefore, it is 
modified to examine potential improvements in the results. For this ex-

perimental condition, a satisfactory agreement between the predictions 
and the experiments is found by using 𝜏d = 5078 min, which is 70% 
larger than the value reported by Yoon et al. [33]. This fact highlights 
the significance of considering the PSD in the modelling of the leaching 
process, and the importance of methods that allow us to do this.

4.5. Dissolution controlled by liquid-film mass-transfer

In the last studied case, we use the EQMOM method to simulate the 
dissolution process, i.e., shrinking particles. In this case, no inert layer is 
considered around particles, and therefore, the core size 𝑙 corresponds 
to the particle outer size 𝐿. Assuming the Stokes regime, the shrinkage 
of the particle size can be described by

𝐺(𝑙, 𝑡) =

⎧⎪⎪⎨⎪
−2𝑏𝐶A

𝜌B

[
1
𝑘s

+ 𝑙

2𝒟

] , 𝑙 > 0

−2𝑏𝐶A𝑘s ∗

(52)
⎪⎩ 𝜌B
exp(𝑐d𝑙 ), 𝑙 ≤ 0
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Fig. 10. The comparison of the dimensionless PSD predicted by the EQMOM 
against the analytical solutions at four selected times for shrinking particles 
(dissolution process) in the mass-transfer controlling regime.

where 𝒟 is the diffusion coefficient of A in the liquid film around parti-

cles. It is noteworthy that Eq. (52) can be obtained from the shrinking-

core model, Eq. (9), by assuming no inert layer resistance, 𝑙 ≡ 𝐿 and 
𝑘f =

2𝒟
𝑙

. The last expression is the Stokes law regime.

In the following, we consider that the mass-transfer in the liquid-film 
is the controlling step, i.e., 𝑘f ≪ 𝑘s. The reason is that if the process 
is controlled by the surface-reaction, the behaviour of both shrinking 
and shrinking-core particles is identical [16], and therefore, the results 
shown previously for shrinking-core particles in the surface-reaction 
controlling regime apply equally to shrinking particles. In addition, the 
concentration of A is assumed constant, so that an analytical solution 
can be obtained for the sake of comparison.

The initial NDF is the truncated log-normal distribution shown in 
Eq. (37). This choice allows to use the analytical solution obtained by 
LeBlanc and Fogler [1] for the dissolution of particles. The parame-

ters of the truncated distribution are the same as those reported in the 
first studied case (see section 4.1). Likewise, the results are expressed 
in terms of the non-dimensional variables 𝜙∗, 𝑙∗ and 𝑡∗, and therefore, 
they do not depend on the individual values for 𝑚0||𝑡=0, 𝒟, 𝐶0

A, 𝜌B and 
𝑏 as long as the concentration of A is excess enough to remain constant. 
To avoid numerical issues at small particle sizes, a negligible surface-

reaction resistance equivalent to a relatively large 𝑘s is employed in 
Eq. (52), i.e., 𝑘s = 103 2𝒟

𝐿̄
. We have observed that the results change 

negligibly by decreasing further the surface-reaction resistance (i.e., in-

creasing 𝑘s), however the stiffness of equations increases too much, 
which in turn makes the ODE solver too slow. Moreover, due to a neg-

ligible surface-reaction resistance, 𝑐d is set to 10 to avoid the excessive 
decrease in the (negative) size of ghost particles, in other words, to 
avoid the excessive increase of the width of the pseudo-NDF.

Fig. 10 compares the results obtained by the EQMOM versus the 
analytical solutions at four selected times. The EQMOM results are ob-

tained by setting 𝑁q = 4. Moreover, 𝑁𝑖 was set to 80 for the first two 
quadrature nodes (𝑖 = 1, 2) and 40 for the last two (𝑖 = 3, 4). We use 
such number of points for the Gaussian quadrature rule to increase the 
accuracy of integrations since 𝐺 is not polynomial in this case. As can 
be seen from Fig. 10, a very good agreement is obtained between the 
predicted and analytical solutions for 𝜙∗ at all the selected times. At 
𝑡∗ = 0.4 and 1.0, the predicted distribution becomes multimodal, hence 
causing some deviation between the predicted PSD and the analytical 
one – that appear as some ripples around the analytical solution. It 
is clearly associated to the approximation of the underlying PSD by 
a quadrature, i.e., a summation of some density functions. In fact, the 
shape of the quadrature is manifested strongly in those predictions. Nev-

ertheless, Fig. 11 confirms that these deviations have negligible effect 
on the average properties of the particle population, as the predicted 
12

values for the conversion match perfectly the analytical values at the 
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Fig. 11. The comparison of the conversion predicted by the EQMOM against 
the analytical solution for shrinking particles (dissolution process) in the mass-

transfer controlling regime.

selected times. Both the analytical and predicted values are obtained by 
using Eq. (43). Moreover, the predicted values of the moments are very 
close to the analytical ones as the moment error defined in Eq. (38) is 
below 0.044 for all the moments at all the selected times. For instance, 
Fig. S5 of the Supplementary Material shows a very good agreement 
between the predicted and analytical solutions for 𝑚0.

The results confirm that the proposed method performs well in sim-

ulating the dissolution process under both surface-reaction and mass-

transfer limiting regimes, and therefore, we expect similar performance 
in general cases in which both mechanisms play a role in the dissolu-

tion of particles. It is noteworthy that the particle breakage can also be 
described by the EQMOM in the case of shrinking particles, following 
the procedure detailed by Yuan et al. [14], which is an advantage over 
the other approaches mentioned in the introduction section.

5. Conclusions

We have presented a modified version of the extended quadrature 
method of moments (EQMOM) to solve the population balance equa-

tion (PBE) for the description of shrinking-core particles in the leaching 
process. In fact, we have shown that the EQMOM can naturally address 
the dependency of the shrinking-core model on the particle core size 
(with an evolving distribution) and outer size (with a constant distribu-

tion), and therefore, it allows us to use this model in the PBE without 
any mathematical complexity.

The main advantage of the proposed approach is that it requires no 
specific assumption on the limiting step or the operating conditions, 
as demonstrated by the different test cases studied in this work. An-

other advantage is the superior performance with respect to the original 
EQMOM developed by Yuan et al. [14] as exhibited in the case of a 
leaching process with an initial uniform particle size distribution (PSD). 
This superior performance is attributed to the fact that the proposed 
approach considers also particles with a negative core size, which has 
been implemented through the definition of the pseudo-NDF, the trans-

formation of the internal coordinate (i.e., size) and the modification of 
the shrinking-core model.

In summary, the obtained predictions for the PSD and conversion 
in the studied test cases prove this approach promising for solving a 
PBE that describes shrinking-core particles in the leaching process. In 
addition, it has been shown that the same approach can be employed to 
solve the PBE for the dissolution process, i.e., shrinking particles.

In an upcoming study, we plan to employ this approach to simulate 
a leaching process of a Hydrometallurgical recycling route for lithium-

ion batteries. Furthermore, the proposed approach can be extended to 
applications described by the shrinking core-shrinking particle model 
[34] that requires to solve a bi-variate PBE written in terms of both the 

core size and outer size of particles.
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