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Abstract: In the field of image forensics, notable attention has been recently paid toward the detection
of synthetic contents created through Generative Adversarial Networks (GANs), especially face
images. This work explores a classification methodology inspired by the inner architecture of typical
GANs, where vectors in a low-dimensional latent space are transformed by the generator into
meaningful high-dimensional images. In particular, the proposed detector exploits the inversion
of the GAN synthesis process: given a face image under investigation, we identify the point in the
GAN latent space which more closely reconstructs it; we project the vector back into the image
space, and we compare the resulting image with the actual one. Through experimental tests on
widely known datasets (including FFHQ, CelebA, LFW, and Caltech), we demonstrate that real
faces can be accurately discriminated from GAN-generated ones by properly capturing the facial
traits through different feature representations. In particular, features based on facial landmarks
fed to a Support Vector Machine consistently yield a global accuracy of above 88% for each dataset.
Furthermore, we experimentally prove that the proposed detector is robust concerning routinely
applied post-processing operations.

Keywords: Generative Adversarial Networks; image forensics; GAN inversion; face biometrics;
StyleGAN2

1. Introduction

The creation of synthetic media through artificial intelligence has reached unprece-
dented levels of realism. Impressive results have been achieved in recent years for the
semantic generation and manipulation of audio-visual content in fully or semi-automated
fashion, also with multi-domain capabilities (e.g., text-to-image (https://openai.com/dall-
e-2/ (accessed on 30 December 2022), text-to-speech).

Great effort has been spent in the generation of synthetic visual data. Video signals are
highly powerful carriers in terms of semantics that can be conveyed, but they are still more
complex to synthesize and manipulate. In fact, despite the rapidly progressing technology,
producing high-quality manipulated videos involving arbitrary subjects and scenes still
requires considerable skills and processing time. Instead, the generation of still pictures,
and in particular the production of synthetic faces, is currently very easy and accessible
to everyone, especially thanks to Generative Adversarial Networks (GANs), which can
achieve impressive visual quality with minimal computational requirements [1,2]. Genera-
tive models are available online [3,4] to automatically generate or even edit face images;
web interfaces (https://thispersondoesnotexist.com/ (accessed on 30 December 2022))
running pre-trained generators are also available, requiring no more than a click to obtain
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a hyper-realistic fake face. Harmful misuses of this technology have already been ob-
served in the web ecosystem, including the creation of fictitious social media profiles (https:
//edition.cnn.com/2020/02/28/tech/fake-twitter-candidate-2020/index.html (accessed
on 30 December 2022)) and digital identities (https://www.nbcnews.com/tech/security/
how-fake-persona-laid-groundwork-hunter-biden-conspiracy-deluge-n1245387 (accessed
on 30 December 2022)), thus calling for specialized detection technologies.

Researchers have proposed different techniques to distinguish between real and
synthetic faces over the years [5–7], and great attention has been devoted over the last few
years toward identifying whether an image has been generated through a GAN [8–11].
Further details about the related works are provided in the next section.

In this paper, we propose a novel detector for GAN-generated images based on
the analysis of an image resulting from a GAN inversion process. In practice, given an
image under investigation, we project it in the GAN latent space through an inversion
process [12], and then back into the image space with a generation process. The result-
ing image is then compared with the actual one using different similarity metrics. We
demonstrate that, as expected, when the process is applied to GAN-generated images,
the two images will be extremely close to each other. In contrast, natural images will be
approximated with significantly lower accuracy.

Extensive experiments on images coming from different sources have shown that
landmark-based metrics are particularly effective in capturing the distinctive traits of syn-
thetic images, which can be learned using shallow classifiers such as SVMs. Furthermore,
the obtained detectors are proven to be generally robust to typical post-processing, such as
resizing, JPEG compression, and upload/download operations through social media.

The major contributions of the paper can be summarized in the following points:

• We explicitly use the underlying mechanisms of GAN generators to perform the
detection, instead of applying a blind learning procedure;

• We demonstrate that generative approaches produce structural errors in the reproduc-
tion of previously unseen face images, which can be revealed through appropriate
sets of features;

• The proposed technique can be extended to any generator that admits an inversion,
thus limiting the need for retraining over large image datasets.

• We release a data corpus of face images and their reconstructions through the Style-
GAN2 inversion, available for research purposes.

The rest of the paper is structured as follows: in Section 2, we summarize the current
state of research in the field; in Section 3, we describe the proposed inversion-based detector,
providing details on the inversion process, and on the feature extraction and classification
process; in Section 4, we define the experimental setup and the datasets used for testing,
and we analyze the results under different operating conditions; finally, in Section 5, we
draw some conclusions.

2. Related Work

In this section, we provide a short survey of the literature on real-versus-generated
image detection, focusing in particular on data-driven methods and on the problem of
GAN generation and inversion.

2.1. Data-Driven Detection Methods

In the context of real-versus-generated image detection, several approaches have
been proposed. As in many related fields, deep networks have been widely exploited for
detection purposes. One possibility is to apply them to characterize handcrafted features,
as it happens in [13] for co-occurrence matrices. In addition, their inner behavior regarding
neuron activation can be used as a clue to detect anomalies due to a synthetic source [14].

However, the most common approach is to employ fully data-driven methods, typi-
cally based on Convolutional Neural Networks (CNN), where the most distinctive
features [11] are automatically learned from the data with remarkable results. Although

https://edition.cnn.com/2020/02/28/tech/fake-twitter-candidate-2020/index.html
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they achieve excellent performance under rather aligned conditions in terms of training
and testing distributions, it has been shown that they suffer some shortcomings due to
their purely inductive nature [8]. This includes a significant loss of performance when
the investigated data have undergone some post-processing, perhaps unseen in training,
which likely occurs during the digital image life cycle. Data augmentation strategies and
the inclusion in the training sets of post-processed samples may help in mitigating these
issues [8,15], but they require the simulation of a huge variety of processing pipelines
arising in real-world scenarios. Furthermore, deep learning-based approaches are often
used as black boxes, thus making it difficult to interpret the inner mechanisms that led to a
given decision.

For the above reasons, the performance and reliability of purely data-driven GAN
detectors on testing data from uncontrolled settings are hard to predict. On the contrary,
principled approaches exploiting the inherent architectural properties of generators repre-
sent a promising path to enrich the forensic tools available, and for devising detectors with
enhanced generalization and explainability. Accordingly, this work explores the possibility
of exploiting the inversion properties of the generator for identifying synthesized data, as
explained in the following.

2.2. GAN Image Generation and Inversion

The GANs’ typical inner mechanism entails that (random) vectors lying in a latent
space are transformed into semantically meaningful images. This procedure can be also
inverted to some extent, by back-projecting an image into a point in the latent space that
corresponds to similar content in the image space.

The inversion of generative models has recently drawn strong attention in the com-
puter vision community [12,16]. In this context, an interesting property is that the latent
space can be queried and browsed along specific directions corresponding to visual at-
tributes. As a matter of fact, inversion processes are mainly investigated for fast image
editing applications. To the best of our knowledge, the only work that exploits inversion
properties for inferring information on the image source is [17]. However, in that case, the
authors analyze synthetic images only, with the goal of identifying the correct generator
among a set of candidates. Moreover, a single distance-based indicator is used, and earlier,
less compelling GANs are considered in the experimental analysis.

In our work, we analyze the outcome of the GAN inversion process, which given an
image under investigation, finds the point in the GAN latent space that leads to the closest
possible generated output in the image domain [12]. We expect that the application of
this kind of process to images synthesized by that generator will produce a point in the
latent space that leads to an equal or highly similar image, given that such a point exists for
sure. On the contrary, the inversion process applied to natural images can only provide
a latent vector that is associated with some approximation of the image, according to the
considered generative model.

The proposed detector was tested on the widely known and highly realistic StyleGAN2
face generator [4], among the best-performing GAN image synthesizers currently available.
The images under investigation are compared to their closest reconstruction obtained
through the inversion process available in StyleGAN2, and their biometric facial traits are
encoded through different face representations (including deep embeddings and landmark-
based features) and learned by conventional classifiers such as SVMs. Conceptually, our
work shares similarities with differential morphing detection pipelines, as in [18,19], where
face image pairs containing authentic or morphed faces in biometric verification scenarios
need to be distinguished, thus also requiring the characterization of subtle differences
in facial traits. The use of handcrafted features and lightweight classifiers for detecting
synthetic images has also been explored in [20], which however, did not include semantic
features. The use of semantic cues for the detection of GAN-generated images has been
explored and advocated by several works [21–24] but, in those cases, semantic artifacts are
characterized in a post hoc analysis, thus not relying on the architecture of the generator.
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3. Inversion-Based Detection

The key idea of the devised forensic strategy is to discriminate between real and
GAN-synthesized face images by retro-projecting the image under analysis into the GAN
latent space, synthesizing the image associated with the relevant point in the latent space,
and comparing the generated image with the actual one.

This concept is represented in Figure 1. We start from an input image under investiga-
tion xI (the picture on top of image space), and we feed it into a GAN inversion process
to obtain the corresponding point zR in the GAN latent space. We then run the GAN
generator to produce a reconstructed version xR of the original image, associated with
zR (bottom image in the image space). At this point, we have two copies of the image
under analysis, the original and the reconstructed one, and we want to compare them
to measure their similarity: the greater the similarity, the higher the probability that the
image is GAN-generated. In fact, if the image under analysis comes from this generator,
independently of the fact that it was part of the training set or not, a point in the latent
space should exist that closely generates the same image. This is not true in the case of
a real image, for which that point, in general, will not exist, and the inversion will just
provide a more or less accurate approximation but not a perfect reconstruction. Indeed,
in practice, we will never obtain a pointwise-equal image due to the limited accuracy of
the inversion process, but nevertheless, we expect that GAN-generated images will much
more closely match the target than real images.

Thus, properly comparing xI and xR is an important part of the process, as the differences
among the two images cannot be just modeled as random noise. For this reason, we jointly
perform two types of analysis: one based on standard image similarity measures, and the other
on more specific face similarity features, and we analyze the relevant performances.

Image space 

Image under
investigation 

Reconstructed
image 

 

Latent
space

INVERSION

RECONSTRUCTION

SIMILARITY
ANALYSIS

Figure 1. Overview of the inversion-based detection.

In the following sub-sections, we further illustrate the two main processes concerned
with the above scheme: the inversion process, and the comparison and classification processes.

3.1. Inversion Process

Let us consider the typical GAN architecture, where a generator G and a discriminator
D are trained jointly through an adversarial process. The goal of G is to generate synthetic
data that resemble real data; the goal of D is to correctly distinguish the synthetic data
generated by G and an available corpus of real data [25]. Starting from an initial version of
both, the two networks are trained in an alternate manner by competing with each other
and progressively improving their performance: the current version of D is fine-tuned on
the real samples, and the synthetic ones created by the current version of G; in turn, G is
then fine-tuned so as to maximize the classification loss of the updated version of D. At the
end of this training process, the distribution of data generated by G is intended to match
the distribution of real data, so as to minimize the discrimination capabilities of D.
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Generators typically work to transform a randomly drawn vector z ∈ Z into an image
x = G(z) in the image space X . z and Z represent the latent vector and the latent space,
respectively, and z encodes information about the appearance of G(z). Figure 2 depicts
this mechanism. In other words, during the training process, the mapping G : Z → X
is learned, and points that are close in the latent space Z are transformed through G into
visually similar images in X .

Generator 

Discriminator  

Synthetic images

Real images

Latent
space

Image space 

Predictions
(real/synthetic)

Updated
loss

Figure 2. GAN architecture and training scheme.

The inversion (or projection) of GANs [12] consists of mapping a certain image under
analysis xI back into its corresponding representation in the latent space. Formally, this
can be formulated as finding a point zR in Z such that G(zR) is as close as possible to xI
according to a certain metrics `(·, ·):

zR = arg min
z∈Z

`(G(z), xI) (1)

We denote xR
.
= G(zR) as the reconstructed version of xI.

In this work, we study the inversion and reconstruction processes by focusing on the
case where the generator G is the widely known StyleGAN2 face generator [3], for which the
authors also provide a strategy for solving the problem in (1) (see Section 5 of [3]), together
with an open source implementation (https://github.com/NVlabs/stylegan2-ada-pytorch
(accessed on 30 December 2022)).

Figure 3 reports examples of StyleGAN2 images and their reconstructions.

Figure 3. Examples of face images before (top row) and after (bottom row) the reconstruction using
the inversion StyleGAN2 process available https://github.com/NVlabs/stylegan2-ada-pytorch/
blob/main/projector.py (accessed on 30 December 2022).

Therefore, given a face image under analysis xI, possibly coming from a variety of
sources, we propose to compare it to its reconstructed version xR. If xI has been actually

https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch/blob/main/projector.py
https://github.com/NVlabs/stylegan2-ada-pytorch/blob/main/projector.py
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synthesized by the considered generator G, its reconstruction xR should coincide or be
very close to xI, also depending on the effectiveness of the optimization strategy employed
to solve the problem in (1). Conversely, when xI is not an output of the generator, the
inversion process can only identify the closest reconstruction achievable through G.

3.2. Feature Extraction and Classification Process

After the inversion and reconstruction, we aim at jointly characterizing the visual ap-
pearance of xI and xR, with the goal of predicting whether the former has been synthesized
through G or not. Thus, in all cases, the objects of our analysis will be images face pairs, which
we indicate as being real and synthetic when the related xI is real or synthetic, respectively.
In particular, as depicted in Figure 4, we extract a feature representation separately from
each image in the pair, thus obtaining FI and FR. Then, a comparison operator between
the two is applied, thus obtaining for each pair a single differential feature vector. Those are
then used to train a classifier, to automatically characterize the differences resulting from the
inversion process.

Inversion and
reconstruction

Feature  
extraction

Differential
feature  
vector

Training/ 
inference

Comparison
operator

Figure 4. Pipeline of the comparison and training/classification processes.

We employ different feature extractors and comparison rules with the goal of capturing
specific biometric traits, resulting in different types of differential feature vectors. In
particular, we adopt as feature extractors both deep embeddings and handcrafted features
proposed in the literature for automated face analysis tasks, namely:

• FaceNet embeddings: Proposed in [26], the FaceNet features are the best-performing
ones on the LFW face recognition dataset [27] among the deep features selected in the
Deepface toolbox (https://github.com/serengil/deepface (accessed on 30 December
2022)). In computing FI and FR, we employ the original 512-dimensional FaceNet
version and its compact 128-dimensional variant. In this case, the comparison is
simply an element-wise difference in the module.
We denote as FN128∈ R128 and FN512∈ R512 the two types of differential feature
vectors obtained.

• Facial landmarks: proposed in [28] and available in the https://github.com/davisking/
dlib (accessed on 30 December 2022) library, the landmark localization algorithm
returns 68 facial landmarks related to key facial structures. Those can be further
partitioned into different face areas (face line, eyebrows, eyes, nose, and mouth), as is
shown in Figure 5. This feature extractor outputs the arrays FI and FR of size 68× 2,
containing row-wise, the 2D coordinates of the 68 landmarks, and we extract from
them two types of differential feature vectors:

– LM68∈ R68 contains the Euclidean distances between FI[i, :] and FR[i, :],
i = 1, . . . 68 (i.e., the 2D coordinates of corresponding landmarks in the two
different faces);

– LM136∈ R136 contains the differences in module between individual correspond-
ing landmark coordinates FI[i, j] and FR[i, j], i = 1, . . . 68, j = 1, 2.

https://github.com/serengil/deepface
https://github.com/davisking/dlib
https://github.com/davisking/dlib
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(a) landmarks (b) landmarks detected

Figure 5. (a) Landmarks numbered from 1 to 68; (b) Landmarks detected on a face. We can identify
5 areas: face line (red landmarks [1–17]), eyebrows [18–27], and eyes [37–48], both in green (we call
them eye area), nose [28–36] in yellow, and mouth [49–68] in blue.

4. Experimental Setup and Analysis of Results

We report the results of our experimental campaign on synthetic and real face images
of different sources, and by employing different metrics and feature representations for the
joint analysis of xI and xR.

In particular, we considered the image data employed for the work [2], which have
been made available by the authors (https://osf.io/ru36d/ (accessed on 30 December
2022)). They include synthetic images generated through StyleGAN2 (indicated as SG2),
real images extracted from FFHQ (indicated as FFHQ), and the high-quality image dataset
of human faces used for training StyleGAN2 (https://github.com/NVlabs/ffhq-dataset
(accessed on 30 December 2022)).

Moreover, to diversify the data corpus and test generalization capabilities, we consid-
ered additional sets of real images coming from different sources, in particular:

• CelebA: a subset of https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (accessed
on 30 December 2022) [29], proposed for face detection and recognition, landmark
localization, and face editing.

• CelebHQ: a subset of the https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_
HQ.html (accessed on 30 December 2022) dataset [30], proposed for evaluating algo-
rithms in face parsing, recognition, and generation.

• Caltech: a subset of https://data.caltech.edu/records/6rjah-hdv18 (accessed on 30
December 2022) involving 27 subjects with different expressions and under different
illumination conditions.

• LFW: a subset of the http://vis-www.cs.umass.edu/lfw/ (accessed on 30 December
2022) (LFW) dataset [27], a public benchmark for face verification.

Details about the data used in the experiments are reported in Figure 6.

SYNTHETIC REAL
SG2 FFHQ CelebA CelebHQ Caltech LFW

No. of images 400 400 390 397 446 398
Resolution 1024×1024 1024×1024 178×218 1024×1024 896×592 250×250

Format PNG PNG PNG PNG JPEG PNG

Figure 6. Summary of the face image data used in the experiments.

For each image, we applied the inversion process and obtained its reconstructed
version; we used the default parameters of the inversion algorithms and fixed the random
seed for reproducibility. As a pre-processing step for all images before the inversion, we
detected the squared area containing the face through the https://github.com/davisking/
dlib (accessed on 30 December 2022) library, and blurred the background outside that area
to retain mostly face information in the input data. If needed, we resized the area (using the

https://osf.io/ru36d/
https://github.com/NVlabs/ffhq-dataset
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://data.caltech.edu/records/6rjah-hdv18
http://vis-www.cs.umass.edu/lfw/
https://github.com/davisking/dlib
https://github.com/davisking/dlib
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https://pillow.readthedocs.io/en/stable/ (accessed on 30 December 2022) library) to the
resolution 1024 × 1024, which is the one accepted by the inversion algorithm. The average
time for reconstructing an input image on an NVIDIA RTX 3090 GPU is 90 s.

Examples of input and reconstructed images are reported in Table 1. We also release the
input and reconstructed images https://tinyurl.com/puusfcke (accessed on 30 December 2022).

Table 1. Examples of input face images and their reconstructions.

Dataset xI xR

SG2

FFHQ

CelebA

CelebHQ

Caltech

https://pillow.readthedocs.io/en/stable/
https://tinyurl.com/puusfcke
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Table 1. Cont.

Dataset xI xR

LFW

From visual inspection, it can be noticed that the face attributes of the synthetic image
are reconstructed very accurately, while more pronounced discrepancies in the biometric
traits are present for real images. In the following, we jointly study the image faces given
as input to the inversion process and their reconstructed counterparts, thus, xI and xR.

4.1. Metrics-Based Analysis

First, we perform a similarity analysis between each image and its reconstructed
counterpart. We considered the following metrics:

• Mean Squared Error (MSE): Computes the distance pixel-wise between the two images

MSE(xI, xR) =
1

MN

N

∑
n=1

M

∑
m=1

3

∑
k=1

(xI(n, m, k)− xR(n, m, k))2

where M,N are the dimensions of the image (equal for both images); xI is the RGB
input image and its xR reconstructed version.

• Structure Similarity Index Method (SSIM): it is a perception-based model that takes
into account the mean values and the variances of the two images

SSIM(xI, xR) =
(2µIµR + c1)(2σIR + c2)

(µ2
I + µ2

R + c1)(σ
2
I + σ2

R + c2)

with µI, µR being the mean values of the two images, σI, σR variance of the two images,
and c1 and c2 being stabilization factors.

• Learned Perceptual Image Patch Similarity (LPIPS) (https://github.com/richzhang/
PerceptualSimilarity (accessed on 30 December 2022)): it is proposed in [31] and used
in [4] for the same purpose; it computes the similarity between the activations of two
image patches for some pre-defined network. A low LPIPS score means that the image
patches are perceptually similar.

The results are reported in Figure 7. We can notice that SSIM histograms do not show
a clear distinction among different clusters. Indeed, SSIM is sensitive to the perceivable
changes in terms of structural information, which are usually not noticeable in GAN-
generated images. On the contrary, we observe that pairs deriving from real images yield
generally higher MSEs than the ones derived from synthetic faces (red histogram), making
it evident that reconstructing a pointwise equal image of an unknown target is much more
difficult. The same happens for the LPIPS metrics, where, following what was observed
in [4], the SG2 images yield a higher similarity with their reconstructed counterparts.

Moreover, real images belonging to different datasets lead to different distributions,
both in terms of LPIPS and MSE. In particular, it is interesting to observe that FFHQ
images (blue histogram) present significantly lower values concerning other sources of real
images: this may be related to the fact that those images were included in the training set
of StyleGAN2, and thus, they are known to the generator.

https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity
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4.2. Classification Results

We now report the results of the classification analysis performed according to the
pipeline proposed in Figure 4. First, we plot the histogram of the MSE between FI and
FR among the different datasets. In Figure 8, we observe that both FaceNet embeddings
are able to improve the discrimination capability already observed on Figure 7. In this
representation, the images generated with SG2 produce a clear peak around low MSE
values, with a rather limited overlap with the other clusters. As expected, the FFHQ image
pairs lie between synthetic samples and other real ones.

The charts reported in Figure 9 propose an analysis of the individual subsets of land-
marks, according to the face area in which they belong (see Figure 5). These plots allow
us to grasp the importance and the specific contribution of different sets of landmarks
corresponding to different areas in the face. Indeed, the face line and eyes areas (eyes and
eyebrows landmarks) clearly highlight the differences between real and synthetic pairs
(see Figure 9b–d), while the nose and mouth areas are less effective in discrimination
(Figure 9e–f). Anyway, the whole set of landmarks leads to the strongest separation, and is
therefore used for further analysis.

The UMAP visualization of the FN512 and LM68 differential features (Figure 10) provides
a 2D view of the distribution of different pairs: while pairs deriving from real images of
different sources essentially overlap, real and synthetic pairs clearly tend to cluster together.

Figure 7. Histograms of different similarity metrics for images belonging to different datasets and their
reconstructed counterparts. For each case, we report the density of the values of each similarity metric
and their https://seaborn.pydata.org/generated/seaborn.boxplot.html (accessed on 30 December 2022)
on top of the histogram, highlighting the interval between the first and third quartiles of each dataset
(colored box), the median value of the distribution (vertical line within the colored box), and the outliers
(grey diamonds).

https://seaborn.pydata.org/generated/seaborn.boxplot.html
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(a) FaceNet128 (b) FaceNet512

Figure 8. Comparison between FaceNet128 and FaceNet512 features using the MSE. FaceNet512
shows better results: the SG2 faces are well separated with respect to the other datasets, where the
distributions tend to overlap each other. FaceNet128 shows an overlap between SG2 and LFW.

(a) all landmarks (b) face line landmarks

(c) eyebrows landmarks (d) eye landmarks

Figure 9. Cont.
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(e) nose landmarks (f) mouth landmarks

Figure 9. Plots above visualize the histograms of the distributions of the landmarks of different areas
of the face for the different datasets. The full set of landmarks shows better discrimination capability.

(a) UMAP for FN512 (b) UMAP for LM68

Figure 10. Visualization of FN512 and LM68 differential feature vectors through the UMAP dimen-
sionality reduction.

For performing training and inference, we split our datasets into fixed train and
test sets. In particular, we used 80% of images from each dataset for training, and the
remaining 20% for testing. Different classifiers are used for comparative analysis; in
particular, Support Vector Machines (SVMs), Random Forest (RF), Logistic Regression
(LR), and Multilayer Perceptrons (MLPs), as provided in https://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVC.html (accessed on 30 December 2022) tool. We
employed algorithms with default parameters and applied grid search for optimizing
hyperparameters. In addition, we tested the Feedforward Neural Network (FNN) model
provided by https://www.deeplearningwizard.com/deep_learning/practical_pytorch/
pytorch_feedforward_neuralnetwork/ (accessed on 30 December 2022).

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/
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The results obtained with different types of differential vectors are reported in the
following Table 2a–d. We first tested the datasets of real images individually against the
SG2 data (indicated as * vs. SG2), as well as their union (indicated as All vs. SG2), yielding
six different settings reported row-wise in the tables.

We observe that the SVM provides, on average, better results, and also in front of
limited computational complexity. In addition, we verified that the Radial Basis Function
(RBF) kernel with hyperparameter C = 1 consistently yields the best performance; thus,
we select it as the reference model for the following experimental analyses. In terms of
computational efficiency, the training time of SVM models is in the order of milliseconds,
thus, it is negligible with respect to the inversion time.

Interestingly, the landmark-based differential analysis yields substantially higher
discrimination capabilities with respect to the FaceNet-based one, despite their generally
lower dimensionality. In particular, they perform exceptionally well on the LFW pairs,
which are the more critical case for the FaceNet representations. For a better understanding,
we report in Figure 11 a comparative visualization of the landmarks detected in the input
and reconstructed faces, and we plot them together to visualize the misalignment. It can
be seen that the synthetic StyleGAN2 image pairs present almost overlapping landmarks,
while the real ones show irregular displacements of individual landmarks.

Table 2. Accuracy obtained with different data and classifiers (reported in percentage).

SVM RF LR MLP FNN

FFHQ vs. SG2 80.63 76.88 70.63 70.63 79.38
CelebA vs. SG2 82.28 82.91 69.62 69.62 82.91
CelebHQ vs. SG2 88.05 86.16 77.99 77.99 86.79
LFW vs. SG2 76.88 74.38 71.25 73.13 75.63
Caltech vs. SG2 89.38 81.88 81.25 81.25 83.13
All vs. SG2 78.13 75.00 71.88 73.13 77.50

(a) FN128

SVM RF LR MLP FNN

FFHQ vs. SG2 81.88 78.75 73.75 73.13 80.00
CelebA vs. SG2 88.61 84.81 83.54 81.01 88.61
CelebHQ vs. SG2 86.79 84.91 81.13 79.25 86.16
LFW vs. SG2 79.38 78.13 77.50 72.50 81.25
Caltech vs. SG2 85.63 83.75 85.00 86.25 86.25
All vs. SG2 78.13 78.75 76.88 76.25 78.75

(b) FN512

SVM RF LR MLP FNN

FFHQ vs. SG2 87.50 84.37 83.12 86.87 82.50
CelebA vs. SG2 89.24 91.14 88.60 87.34 87.34
CelebHQ vs. SG2 89.30 88.67 86.79 83.01 83.02
LFW vs. SG2 95.59 95.59 89.93 94.96 94.33
Caltech vs. SG2 87.50 87.50 86.25 87.50 87.50
All vs. SG2 89.37 88.12 85.00 85.00 84.37

(c) LM68

SVM RF LR MLP FNN

FFHQ vs. SG2 88.75 84.37 80.62 85.00 85.62
CelebA vs. SG2 89.87 92.40 87.34 84.17 89.87
CelebHQ vs. SG2 89.30 88.67 81.76 84.90 84.90
LFW vs. SG2 94.96 93.71 84.27 90.56 94.96
Caltech vs. SG2 90.62 90.00 86.87 90.00 87.50
All vs. SG2 88.75 87.50 82.50 83.12 85.00

(d) LM136
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SG2

Caltech

LFW

Figure 11. Visualization of the landmarks detected on the input and the reconstructed images from
different datasets. In each case, the left image is the input one with the detected landmarks marked
in blue, and the central one is the corresponding reconstruction with the detected landmarks marked
in red. On the right, the two sets of landmarks are reported on the same spatial grid, so that their
displacement can be visualized.

In general, the FFHQ pairs seem to be the harder ones to distinguish from SG2 pairs
also for landmark-based features, possibly because the former were employed for training
the StyleGAN2 generator. This is also observed in Figures 12 and 13, where the ROC curves
of the different classification scenarios and feature representations are reported. Even if the
results are very good in all cases, Table 3 shows that AUC values for the LM68 and LM136
case remain lower for the FFHQ data with respect to other real images.
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(a) ROC for FN128. (b) ROC for FN512.
Figure 12. Comparison of the ROC curves obtained with the SVM model using Facenet features.

(a) ROC for LM68. (b) ROC for LM136.
Figure 13. Comparison of the ROC curves obtained with the SVM model using landmark-based
features.

Table 3. AUC values for the SVM classifiers.

FN128 FN512 LM68 LM136

FFHQ vs. SG2 0.85 0.90 0.95 0.95
CelebA vs. SG2 0.91 0.93 0.96 0.96
CelebHQ vs. SG2 0.93 0.93 0.96 0.96
LFW vs. SG2 0.84 0.89 0.98 0.98
Caltech vs. SG2 0.94 0.95 0.96 0.96
All vs. SG2 0.86 0.92 0.96 0.95

4.3. Robustness Analysis

An aspect of high practical relevance is whether synthetic images are still identified
through the inversion-based analysis, even though they are not the direct output of the
generator, but undergo successive post-processing. An advantage of facial landmarks is the
fact that their detection and localization are rather robust to the operations applied to the
images under analysis. FaceNet embeddings are also designed to generalize to different
face image scales and conditions.

Since handling the variety of (even slight) potential operations is a known issue for
data-driven techniques based on learned features, we now assess the robustness of the
classifiers developed in Section 4.2 when training and testing data are not aligned in terms
of post-processing. In this view, we study three routinely applied operations in the lifecycle
of digital images, namely resizing, JPEG compression, and social network sharing. For the
sake of conciseness, we focus on the case of FFHQ vs. SG2, which is the most critical one
for the best-performing features.
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4.3.1. Resizing

We have tested our discrimination models with inputs at different resolution levels
by downscaling and upscaling the images. In particular, we rescale the entire datasets at
different scaling factors {0.3, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3}, we apply the inversion/reconstruction
process for each case, and finally, we compute the differential feature vectors, FN128, FN512,
LM68, and LM136. The library used for the resize process is https://pillow.readthedocs.io/en/
stable/ (accessed on 30 December 2022), with the nearest neighbor resample parameter set
(PIL.Image.NEAREST in the code). Since the StyleGAN2 inversion algorithm requires inputs
with fixed size 1024 × 1024 pixels, when inverting images of different resolutions, a further
cropping/rescaling operation is needed to meet this requirement. In doing so, some details of
the image change in terms of quality (see Figure 14), making the discrimination between real
images and fake images in principle harder.

After having scaled all the images, we trained and tested the models with these resized
examples. Tables 4–7 report the results obtained, where the training scaling factors are
reported row-wise, and the testing scaling factors column-wise. Rows and columns with a
scaling factor of 1.0 correspond to the baseline case (no scaling), where no post-processing
is applied to either training or testing images. We notice that the accuracies are generally
preserved and they present no dramatic drops, but rather, oscillations around the aligned
cases corresponding to the diagonal values. For the majority of classifiers, the average
variation over different testing sets does not exceed 2%.

Among the different representations, the FaceNet-based features seem to struggle more
with the upscaled images rather than the downscaled ones, occasionally decreasing below
80%. This behavior is reversed for landmark-based features, for which the performances are
more stable for upscaling factors and more sensible and oscillatory for downscaling ones. In
both cases, the dimensionality of the differential vectors does not have a significant impact.

Table 4. Accuracy obtained by FN128 with different resizing factors (reported in percentage).

Train/Test 0.3 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.3 84.35 82.50 83.75 84.37 84.38 81.87 81.88 81.25
0.7 85.00 85.00 84.37 88.13 85.00 82.50 83.12 79.36
0.8 83.75 85.00 85.00 86.25 81.88 82.50 81.25 81.25
0.9 83.12 80.62 81.88 86.25 80.00 78.75 78.75 78.13
1.0 83.12 83.75 80.00 82.50 80.63 80.00 78.13 77.50
1.1 83.12 82.50 82.50 83.75 80.62 81.25 78.75 80.00
1.2 84.61 85.25 83.33 87.18 84.62 80.77 83.97 82.69
1.3 82.70 80.77 80.12 85.26 82.05 83.97 83.33 80.77

Table 5. Accuracy obtained by FN512 with different resizing factors (reported in percentage).

Train/Test 0.3 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.3 86.88 83.13 78.75 82.50 84.38 81.88 80.00 83.75
0.7 85.00 80.62 78.12 81.25 81.88 80.63 80.63 80.63
0.8 85.00 78.12 76.25 80.63 81.25 78.75 78.75 80.00
0.9 83.75 81.25 80.00 80.00 82.50 80.00 78.75 80.63
1.0 85.63 81.25 81.25 78.13 81.88 80.00 80.00 77.50
1.1 83.75 80.63 80.00 82.50 83.13 83.13 80.00 80.63
1.2 81.41 78.21 76.92 78.85 80.79 77.56 80.00 80.63
1.3 80.13 75.64 81.41 78.85 83.33 80.77 78.85 80.75

https://pillow.readthedocs.io/en/stable/ 
https://pillow.readthedocs.io/en/stable/ 


Appl. Sci. 2023, 13, 816 17 of 22

Table 6. Accuracy obtained by LM68 with different resizing factors (reported in percentage).

Train/Test 0.3 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.3 88.13 86.87 83.75 85.62 81.76 85.00 83.33 85.25
0.7 86.87 86.25 84.37 90.62 85.62 85.00 91.66 90.38
0.8 90.65 88.12 86.25 91.25 87.50 86.25 91.02 87.82
0.9 90.00 87.50 87.50 90.62 86.25 86.25 89.10 90.38
1.0 90.00 88.12 86.25 90.62 87.50 85.32 90.25 88.21
1.1 88.75 88.75 85.62 88.75 85.00 87.50 89.10 87.17
1.2 90.00 90.62 89.37 91.25 88.12 90.00 92.94 91.66
1.3 90.00 88.75 86.88 90.65 86.88 90.00 92.31 90.38

Table 7. Accuracy obtained by LM136 with different resizing factors (reported in percentage).

Train/Test 0.3 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.3 85.62 86.87 83.75 86.87 86.25 85.00 87.18 86.53
0.7 88.75 89.37 85.00 90.62 88.12 88.12 91.02 91.02
0.8 91.25 90.62 83.75 92.50 90.00 90.62 90.38 89.10
0.9 91.25 87.75 85.62 90.00 86.87 88.75 89.10 89.74
1.0 89.37 86.87 85.00 90.00 88.75 89.37 90.38 89.10
1.1 90.62 88.75 85.00 89.37 87.50 88.12 90.38 88.46
1.2 92.50 91.25 86.25 90.62 88.75 90.62 91.66 89.10
1.3 93.75 90.62 88.12 91.25 88.12 93.75 94.87 92.30

4.3.2. JPEG Compression

We apply the same robustness analysis for the JPEG compression at different quality
factors {100, 95, 90, 80, 70}. Examples of compressed images and their reconstructions are
reported in Figure 15.

The results are reported in Tables 8–11. As for the resizing section, the library used
for the compression process is https://pillow.readthedocs.io/en/stable/ (accessed on 30
December 2022). We varied the quality parameter of the saved image. The baseline case
is reported in the ’NO COMP’ rows and columns. Additionally, in this case, all of the
feature representations generally retain their accuracies when the training and testing sets
are misaligned, as most of the models have an average deviation from the aligned case
below 2%.

Interestingly, when observing the results column-wise, we notice that for FaceNet-
based features, a stronger JPEG compression consistently degrades the average performance
of the classifiers; as opposed to that, LM68 and LM136 fully retain their accuracy, thus
strengthening the observation that such semantic cues yield an improved robustness to
post-processing.

Table 8. Accuracy obtained by FN128 with different JPEG quality factors (reported in percentage).

Train/Test NO COMP 100 95 90 80 70

NO COMP 80.62 80.62 78.12 76.25 79.37 76.87
100 78.12 78.12 72.50 73.75 74.37 75.00
95 78.75 80.62 76.87 73.12 79.37 76.87
90 82.50 83.12 80.62 79.37 84.37 78.75
80 81.25 76.87 76.25 74.37 81.25 77.50
70 78.12 80.62 75.62 76.87 78.10 74.37

Table 9. Accuracy obtained by FN512 with different JPEG quality factors (reported in percentage).

Train/Test NO COMP 100 95 90 80 70

NO COMP 81.87 80.62 78.75 78.12 80.00 81.25
100 79.37 77.50 76.87 75.62 76.87 77.50
95 78.12 79.37 77.50 76.87 76.25 76.87
90 81.87 82.50 81.25 78.75 80.62 81.87
80 83.12 82.50 76.87 77.50 78.75 81.87
70 85.00 85.62 83.75 83.12 84.37 83.12

https://pillow.readthedocs.io/en/stable/ 
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No post-processing Resize = 0.3 Resize = 0.8 Resize = 1.2

Figure 14. Examples of face images before (top row) and after (bottom row) the reconstruction when
different resizing factors are applied as post-processing.

Table 10. Accuracy obtained by LM68 with different JPEG quality factors (reported in percentage).

Train/Test NO COMP 100 95 90 80 70

NO COMP 87.50 84.37 90.00 85.62 89.37 90.00
100 85.62 88.12 86.87 86.25 88.12 88.12
95 85.00 85.00 86.87 85.62 87.50 86.25
90 83.75 85.62 85.62 82.50 86.87 86.25
80 87.50 90.00 88.75 85.62 89.37 90.00
70 85.00 89.37 86.25 89.37 90.00 90.62

Table 11. Accuracy obtained by LM136 with different JPEG quality factors (reported in percentage).

Train/Test NO COMP 100 95 90 80 70

NO COMP 88.75 88.12 88.75 85.00 90.62 88.75
100 84.37 88.75 88.75 86.87 87.50 88.75
95 86.25 86.87 90.62 88.75 88.75 86.87
90 86.87 88.12 90.62 86.87 89.37 88.12
80 87.50 91.25 90.62 86.87 89.37 91.25
70 87.50 90.62 90.00 89.37 90.00 90.62

4.3.3. Social Network Sharing

The identification of synthetic media over social networks is a well-known challenge
in media forensics [32], and an open issue for GAN-generated image detection [33]. Social
media typically apply custom data compression algorithms to reduce the size and the
quality of the images to be stored on data centers or costumer’s devices, thus hindering
post hoc analyses.

We then test the capabilities of the developed classifiers to generalize to the image
data shared on social networks. It is worth noticing that in this case, the models are
exactly the ones considered in the classifiers developed in Section 4.2; thus, they are trained
entirely on images with no sharing operations. Instead, the testing set is a subset of the
recently published https://zenodo.org/record/7065064#.Y2to3ZzMKdZ (accessed on 30

https://zenodo.org/record/7065064#.Y2to3ZzMKdZ
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December 2022) dataset, which is composed of StyleGAN2 images and real images (extracted
from FFHQ) before and after the upload and download from three different social networks:
Facebook, Telegram, and Twitter. We randomly select 100 synthetic and 100 real images and
extract their shared versions through the three platforms.

Examples of shared images and their reconstructions are reported in Figure 16.

Original Quality factor 70 Quality factor 90 Quality factor 100

Figure 15. Examples of face images before (top row) and after (bottom row) the reconstruction when
different JPEG quality factors are applied as post-processing.

After inversion, we obtain a reconstruction for each of them. If needed, a rescaling
operation is applied to fit the input size of the inversion algorithm. We then extract the
feature representations and differential vectors, and test them through the corresponding
classifiers already trained in Section 4.2 for the FFHQ vs. SG2 scenario.

The results are reported in Table 12, where the accuracies of each binary classification
scenario (one for each platform) are reported column-wise. As highlighted in [33], all
platforms apply JPEG compression (quality factor between 80 and 90), and Facebook also
resizes the images by a 0.7 factor.

Interestingly, the landmark-based features yield remarkable performance in all cases,
thus demonstrating a high robustness against this realistic kind of post-processing. In
particular, they achieve a maximum accuracy in the Facebook case, which is the more
critical one for FaceNet-based features, and also for the general purpose deep networks
analyzed in [33].

Table 12. Accuracy of the different classifiers (SVM model) on a subset of the TrueFace dataset,
including images shared through different social media platforms (reported in percentage).

Facebook Telegram Twitter All

FN128 73 85 77 80
FN512 74 82 78 76
LM68 96 97 98 96
LM136 100 98 96 97
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Original Facebook Twitter Telegram

Figure 16. Shared images before (top row) and after (bottom row) the reconstruction.

5. Conclusions

We have explored a forensic detection strategy for identifying synthetic face images
based on the inversion of the GAN synthesis process. The experimental results demon-
strate that a proper biometric comparison between the image under investigation and its
reconstruction through an inversion algorithm allows for distinguishing images that have
been synthesized by the considered generator and those who are not. In particular, our
analysis shows that landmark-based feature representations are particularly effective for
this purpose.

A desirable aspect of such an approach is that it is not purely inductive, but is based
on the very architecture of the generation methods. Moreover, the best-performing features
refer to an explicit face model, and they express a biometric reconstruction dissimilarity
that can be better interpreted with respect to deep representations.

On the other hand, a limitation of this approach is that it assumes prior knowledge
of the candidate generator, for which an inversion procedure needs to be devised. In
particular, this work focuses on a powerful yet single generator. Extensions of this work
would consider more general scenarios where the inversion-based comparison is tested
against multiple latest generators, such as StyleGAN3 [34] and EG3D [35]. This would
also include dealing with more comprehensive data corpora with diverse facial attributes
in terms of expression, gender or age, as well as more generative models that are trained
to synthesize other objects beyond faces. Moreover, an effective fusion of our approach
with data-driven techniques would be a promising direction for future investigations. In
addition, an open research question is to which extent inversion-based techniques can
be applied to generative models operating in domains other then the visual one, such as
speech [36], text [37], or raw tabular data [38]. In this respect, we expect that the main
concept of the paper still remains valid, while the metrics should be suitably revised to
capture the most significant domain-sensitive differences.
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