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Abstract 

In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal brain magnetic 

resonance images. Our method is based on a deep end-to-end 2D convolutional neural network (CNN) for slice-based segmentation 

of 3D volumetric data. The proposed CNN includes a multi-branch downsampling path, which enables the network to encode 

information from multiple modalities separately. Multi-scale feature fusion blocks are proposed to combine feature maps from dif- 

ferent modalities at di↵erent stages of the network. Then, multi-scale feature upsampling blocks are introduced to upsize combined 
feature maps to leverage information from lesion shape and location. We trained and tested the proposed model using orthogonal 
plane orientations of each 3D modality to exploit the contextual information in all directions. The proposed pipeline is evaluated 

on two di↵erent datasets: a private dataset including 37 MS patients and a publicly available dataset known as the ISBI 2015 lon- 
gitudinal MS lesion segmentation challenge dataset, consisting of 14 MS patients. Considering the ISBI challenge, at the time of 

submission, our method was amongst the top performing solutions. On the private dataset, using the same array of performance 

metrics as in the ISBI challenge, the proposed approach shows high improvements in MS lesion segmentation compared with other 

publicly available tools. 
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1        1. Introduction 23 

2 Multiple sclerosis (MS) is a chronic, autoimmune and de- 

3        myelinating disease of the central nervous system causing le- 

4        sions in the brain tissues, notably in white matter (WM) (Stein- 

5        man, 1996).   Nowadays, magnetic resonance imaging (MRI) 

6        scans are the most common solution to visualize these kind of 

7        abnormalities owing to their sensitivity to detect WM damage 

8        (Compston and Coles, 2008). 

9 Precise segmentation of MS lesions is an important task for 

10        understanding and characterizing the progression of the disease 

11        (Rolak, 2003). To this aim, both manual and automated meth- 

12        ods are used to compute the total number of lesions and total 

13        lesion volume. Although manual segmentation is considered 
35

 

14        the gold standard (Simon et al., 2006), this method is a chal- 
36

 

15        lenging task as delineation of 3-dimensional (3D) information 
37

 

16        from MRI modalities is time-consuming, tedious and prone to 
38

 

17        intra- and inter-observer variability (Sweeney et al., 2013). This 
39

 

18        motivates machine learning (ML) experts to develop automated 
40

 

19        lesion segmentation techniques, which can be orders of magni- 
41

 

20        tude faster and immune to expert bias. 
42

 

21 Among automated methods, supervised ML algorithms can 
43

 

22        learn from previously labeled training data and provide high 
44
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performance in MS lesion segmentation. More specifically, tra- 

ditional supervised ML methods rely on hand-crafted or low- 

level features. For instance, Cabezas et al. (2014) exploited 

a set of features, including intensity channels (fluid-attenuated 

inversion-recovery (FLAIR), proton density-weighted (PDw), 

T1-weighted (T1w), and T2-weighted (T2w)), probabilistic tis- 

sue atlases (WM, grey matter (GM), and cerebrospinal fluid 

(CSF)), a map of outliers with respect to these atlases (Schmidt 

et al., 2012), and a set of low-level contextual features. A Gen- 

tleboost algorithm (Friedman et al., 2000) was then used with 

these features to segment multiple sclerosis lesions through a 

voxel by voxel classification. 

During the last decade, deep learning methods, especially 

convolutional neural networks (CNNs) (LeCun et al., 1998), 

have demonstrated outstanding performance in biomedical im- 

age analysis. Unlike traditional supervised ML algorithms, 

these methods can learn by themselves how to design features 

directly from data during the training procedure (LeCun et al., 

2015). They provided state-of-the-art results in di↵erent prob- 
lems such as segmentation of neuronal structures (Ronneberger 

et al., 2015), retinal blood vessel extraction (Liskowski and 

Krawiec, 2016), cell classification (Han et al., 2016), brain 

extraction (Kleesiek et al., 2016), brain tumor (Havaei et al., 

2017), tissue (Moeskops et al., 2016), and MS lesion segmen- 

tation (Valverde et al., 2017). 

In particular, CNN-based biomedical image segmentation 
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49        methods can be categorized into two di↵erent groups: patch- 

50        based and image-based methods.   In patch-based methods, a 

51        moving window scans the image generating a local representa- 

52        tion for each pixel/voxel. Then, a CNN is trained using all ex- 

53        tracted patches, classifying the central pixel/voxel of each patch 
54        as a healthy or unhealthy region. These methods are frequently 

55        used in biomedical image analysis since they considerably in- 

56        crease the amount of training samples. However, they su↵er of 

57        an increased training time due to repeated computations over 

58        the overlapping features of the sliding window. Moreover, they 

59        neglect the information over the global structure because of the 

60        small size of patches (Tseng et al., 2017). 

61 On the contrary, image-based approaches process the entire 

62        image exploiting the global structure information (Tseng et al., 

63        2017; Brosch et al., 2016). These methods can be further cate- 

64        gorized into two groups according to the processing of the data: 

65        slice-based segmentation of 3D data (Tseng et al., 2017) and 

66        3D-based segmentation (Brosch et al., 2016). 

67 In slice-based segmentation methods, each 3D image is con- 

68        verted to its 2D slices, which are then processed individually. 

69        Subsequently, the segmented slices are concatenated together 

70        to reconstruct the 3D volume. However, in almost all proposed105 

71        pipelines based on this approach, the segmentation is not accu-106 

72        rate, most likely because the method ignores part of the contex-107 

 

 
 

Figure 1: Input features preparation. For each subject, three MRI modalities 

(FLAIR, T1w, and T2w) were considered. 2D slices related to the orthogonal 

views of the brain (axial, coronal and sagittal planes) were extracted from each 

modality. Since the size of extracted slices was di↵erent with respect to the 

plane orientations (axial=182   218, coronal=182    182, sagittal=218    182), 
all slices were zero-padded while centering the brain so to obtain all slices with 

the same size (218 ⇥ 218), no matter their orientation. 

 
data. Valverde et al. (2017) proposed a pipeline relying on a 

cascade of two 3D patch-based CNNs. They trained the first 

network using all extracted patches, and the second network 
73        tual information (Tseng et al., 2017).  

108 was used to refine the training procedure utilizing misclassified 

74 In 3D-based segmentation, a CNN with 3D kernels is used109 

75        for extracting meaningful information directly from the original110 

76        3D image. The main significant disadvantage of these methods111 

77        is related to the training procedure, which usually fits a large112 

78        number of parameters with a high risk of overfitting in the pres-113 

79        ence of small datasets.  Unfortunately, this is a quite common114 

80        situation in biomedical applications (Brosch et al., 2016).  To115 

81        overcome this problem, recently, 3D cross-hair convolution has116 

82        been proposed (Liu et al., 2017; Tetteh et al., 2018), where three117 

83        2D filters are defined for each of the three orientations around a118 

84        voxel (each one is a plane orthogonal to X, Y, or Z axis). Then,119 

85        the sum of the result of the three convolutions is assigned to120 

86        the  central  voxel.   The  most  important  advantage  of  the  pro-121 

87        posed idea is the reduced number of parameters, which makes122 

88        training faster than a standard 3D convolution.  However, com-123 

89        pared to standard 2D convolution (slice-based), still, there are124 

90        three times more parameters for each layer, which increases the125 

samples from the first network. Roy et al. (2018) proposed a 

2D patch-based CNN including two pathways. They used dif- 

ferent MRI modalities as input for each pathway and the outputs 

were concatenated to create a membership function for lesions. 

Recently, Hashemi et al. (2018) proposed a method relying on 

a 3D patch-based CNN using the idea of a densely connected 

network. They also developed an asymmetric loss function for 

dealing with highly unbalanced data. Despite the fact that all 

the proposed patch-based techniques have good segmentation 

performance, they su↵er from lacking global structural infor- 
mation. This means that global structure of the brain and the 

absolute location of lesions are not exploited during the seg- 

mentation. 

In contrast, Brosch et al. (2016) developed a whole-brain seg- 

mentation method using a 3D CNN. They used single shortcut 

connection between the coarsest and the finest layers of the net- 

work, which enables the network to concatenate the features 
91        chance of overfitting in small datasets. 

 

92        1.1. Related works 

 

126 

 
127 

 
128 

from the deepest layer to the shallowest layer in order to learn 

information about the structure and organization of MS lesions. 

However, they did not exploit middle-level features, which have 

93 The literature o↵ers some methods based on CNNs for MS129 

94        lesion  segmentation.   For  example,  Vaidya  et  al.  (2015)  pro-130 

95        posed a shallow 3D patch-based CNN using the idea of sparse 
96        convolution (Li et al., 2014) for e↵ective training. Moreover, 

been shown to have a considerable impact on the segmentation 

performance (Ronneberger et al., 2015) 

97        they added a post-processing stage, which increased the seg- 

 

131 1.2. Contributions 
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104 

mentation performance by applying a WM mask to the output132 

predictions.   Ghafoorian  and  Platel  (2015)  developed  a  deep133 

CNN based on 2D patches in order to increase the number of134 

the training samples and avoid the overfitting problems of 3D-135 

based  approaches.   Similarly,  in  (Birenbaum  and  Greenspan,136 

2016), multiple 2D patch-based CNNs have been designed to137 

take advantage of the common information within longitudinal138 

In this paper, we propose a novel deep learning architecture 

for automatic MS lesion segmentation consisting of a multi- 

branch 2D convolutional encoder-decoder network. In this 

study, we concentrated on whole-brain slice-based segmenta- 

tion in order to prevent both the overfitting present in 3D-based 

segmentation (Brosch et al., 2016) and the lack of global struc- 

ture information in patch-based methods (Ghafoorian et al., 
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2017; Valverde et al., 2017; Roy et al., 2018).  We designed an187 

end-to-end encoder-decoder network including a multi-branch 
2.2. Neuroimaging Research Unit 
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149 

 
150 

 
151 

 
152 

 
153 

downsampling path as the encoder, a multi-scale feature fusion 

and the multi-scale upsampling blocks as the decoder. 

In the encoder, each branch is assigned to a specific MRI 
modality in order to take advantage of each modality individu- 

ally. During the decoding stage of the network, di↵erent scales 
of the encoded attributes related to each modality, from the 

coarsest to the finest, including the middle-level attributes, were 

combined together and upconvolved gradually to get fine details 

(more contextual information) of the lesion shape. Moreover, 

we used three di↵erent (orthogonal) planes for each 3D modal- 
ity as an input to the network to better exploit the contextual 

information in all directions. In summary, the main contribu- 

tions in this work are: 

188 
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201 

The NRU dataset was collected by a research team from Os- 

pedale San Ra↵aele, Milan, Italy. 
It consisted of 37 MS patients (22 females and 15 males) with 

mean age 44.6 12.2 years. The patient clinical phenotypes 
were 24 relapsing remitting MS, 3 primary progressive MS and 
10 secondary progressive MS. The mean Expanded Disability 

status Scale (EDSS) was 3.3   2, the mean disease duration was 

13.1   8.7 years and the mean lesion load was 6.2   5.7 ml. The 
dataset was acquired on a 3.0 Tesla Philips Ingenia CX scan- 

ner (Philips Medical Systems) with standardized procedures for 

subjects positioning. 

The following sequences were collected: Sagittal 3D FLAIR 

sequence, FOV=256 256, pixel size=1 1 mm, 192 slices, 1-
mm thick; Sagittal 3D T2w turbo spin echo (TSE) se- 

 
154 

 
155 

A whole-brain slice-based approach to exploit the overall202 

structural information, combined with a multi-plane strat-203 

quence, FOV=256⇥256, pixel size=1⇥1 mm, 192 slices, 1-mm 

thick; Sagittal 3D high resolution T1w, FOV=256⇥256, pixel 
 

156 egy to take advantage of full contextual information. 204 

 
205 

size=1 1 mm, 204 slices, 1-mm thick. 
For the validation of the NRU dataset, two di↵erent readers, 

 

157 • A multi-level feature fusion and upsampling approach to206 with more than 5 years of experience in manual T2 hyperin- 
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159 

 
160 

 
161 

exploit contextual information at multiple scales. 

The evaluation of di↵erent versions of the proposed model 
so as to find the most performant combination of MRI 
modalities for MS lesion segmentation. 

 
207 

 
208 

 
209 

 
210 

 
211 

tense MS lesion segmentation performed the lesion delineation 

blinded to each other’s results. We estimated the agreement 

between the two expert raters by using the Dice similarity co- 

efficient (DSC) as a measure of the degree of overlap between 
the segmentations, and we found a mean DSC of 0.87. Dif- 

 
162 • The  demonstration  of  top  performance  on  two  di↵erent212 ferently from ISBI dataset, the two masks created by the two 
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168 

datasets. 

 
2. Material 

In order to evaluate the performance of the proposed method 

for MS lesion segmentation, two di↵erent datasets were used: 
the publicly available ISBI 2015 Longitudinal MS Lesion Seg- 
mentation Challenge dataset (Carass et al., 2017) (denoted as 
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218 

 
219 

expert raters were used to generate a high quality “gold stan- 

dard” mask by the intersection of the two binary masks from the 

two raters, which was used for all experiments with this dataset. 

This was to follow the common clinical practice of considering 

a single consensus mask between raters, which was particularly 

justified in our case due to the high DSC value between the two 

raters. 
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173 

the ISBI dataset), and an in-house dataset from the neuroimag-220 

ing research unit (NRU) in Milan (denoted as the NRU dataset).221 

222 

2.1. ISBI  2015  Longitudinal  MS  Lesion  Segmentation  Chal-223 

lenge 
The ISBI dataset included 19 subjects divided into two sets, 

2.2.1. Ethical Statement 

Approval was received from the local ethical standards com- 

mittee on human experimentation; written informed consent 

was obtained from all subjects prior to study participation. 

 

 
174 

 
175 

 
176 

5 subjects in the training set and 14 subjects in the test set. 

Each subject had di↵erent time-points, ranging from 4 to 6. For 
each time-point, T1w, T2w, PDw, and FLAIR image modali- 

224 

 
 

 
225 

3. Method 

 
3.1. Data Preprocessing 

 

177 

 
178 

 
179 

ties were provided.  The volumes were composed of 182 slices226 

with FOV=182   256 and 1-millimeter cubic voxel resolution.227 

All images available were already segmented manually by two228
 

229 

From the ISBI dataset,  we selected the preprocessed ver- 

sion of the images available online at the challenge website. 

All images were already skull-stripped using Brain Extraction 

Tool (BET) (Smith, 2002), rigidly registered to the 1mm3 MNI- 
180 

 
181 

 
182 

 
183 

 
184 

 
185 

di↵erent raters, therefore representing two ground truth lesion 
masks. For all 5 training images, lesion masks were made pub-230

 

licly available.   For the remaining 14 subjects in the test set,231 

there was no publicly available ground truth. The performance232 

evaluation  of  the  proposed  method  over  the  test  dataset  was233 

done through an online service by submitting the binary masks234
 

ICBM152 template (Oishi et al., 2008) using FMRIB’s Linear 

Image Registration tool (FLIRT) (Jenkinson and Smith, 2001; 

Jenkinson et al., 2002) and N3 intensity normalized (Sled et al., 

1998). 

In the NRU dataset, all sagittal acquisitions were reoriented 
 

186 to the challenge1 website (Carass et al., 2017). 

 
 

1http://iacl.ece.jhu.edu/index.php/MSChallenge 

235 

 
236 

 
237 

 
238 

in axial plane and the exceeding portion of the neck was re- 

moved. T1w and T2w sequences were realigned to the FLAIR 

MRI using FLIRT and brain tissues were separated from non- 

brain tissues using BET on FLAIR volumes.   The resulting 

• 

• 

http://iacl.ece.jhu.edu/index.php/MSChallenge
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Figure 2: General overview of the proposed method. Input data is prepared as described in Section 3.2.1, where volumes for each modality (FLAIR, T1w, and T2w) 

are described by slices (C is the total number of the slices along axial, coronal, and sagittal orientations, and 218 218 is their size after zero-padding). Data is 

presented in input by slices, and the model generates the corresponding segmented slices. The downsampling part of the network (blue blocks) includes three parallel 

ResNets without weight sharing, each branch for one modality (in this Figure, we used three modalities: FLAIR, T1w, and T2w). Each ResNet can be considered 

composed by 5 blocks according to the resolution of the representations. For example, the first block denotes 64 representations with resolution 109 109. Then, 

MMFF blocks are used to fuse the representations with the same resolution from di↵erent modalities. Finally, the output of MMFF blocks is presented as input to 
MSFU blocks, which are responsible for upsampling the low-resolution representations and for combining them with high-resolution representations. 

 

 
Figure 3: Building blocks of the proposed network. a) MMFF block is used to combine representations from di↵erent modalities (FLAIR, T1w, and T2w) at the 
same resolution. b) MSFU block is used to upsample low-resolution features and combine them with higher-resolution features. 

 
 

239 

 
240 

 
241 

 
242 

brain mask was then used on both registered T1w and T2w im-244 

ages to extract brain tissues. Finally, all images were rigidly 

registered to a 1mm3 MNI-ICBM152 template using FLIRT to245 

obtain volumes of size (182 ⇥ 218 ⇥ 182) and then N3 intensity246 

3.2. Network Architecture 

 
In this work, we propose a 2D end-to-end convolutional net- 

work based on the residual network (ResNet) (He et al., 2016). 

243 normalized. 247 

 
248 

The core idea of ResNet is the use of identity shortcut connec- 

tions, which allows for both preventing gradient vanishing and 
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249 

 
250 

 
251 

reducing computational complexity.  Thanks to these benefits,303 

ResNets have shown outstanding performance in computer vi-304 

sion problems, specifically in image recognition task (He et al.,305 

109, 54 54, 27 27, 14 14, and 7 7). Thanks to this organi- 
zation, we can take advantage of the multi-resolution. Features 

with the same resolution from di↵erent modalities are com- 
252 2016). 306 bined using MMFF blocks as illustrated in Figure 3(a). Each 
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262 

We modified ResNet50 (version with 50 layers) to work as307 

a pixel-level segmentation network. This has been obtained by308 

changing the last prediction layer with other blocks and a dense309 

pixel-level  prediction  layer  inspired  by  the  idea  of  the  fully310 

convolutional network (FCN) (Long et al., 2015).   To exploit311 

the MRI multi-modality analysis, we built a pipeline of paral-312 

lel ResNets without weights sharing. Moreover, a multi-modal313 

feature fusion block (MMFF) and a multi-scale feature upsam-314 

pling block (MSFU) were proposed to combine and upsample315 

the features from di↵erent modalities and di↵erent resolutions,316 

MMFF block includes 1 1 convolutions to reduce the number 

of feature maps (halving them), followed by 3 3 convolutions 

for adaptation. A simple concatenation layer is then used to 

combine the features from di↵erent modalities. 
In the upsampling stage, MSFU blocks fuse the multi- 

resolution representations and gradually upsize them back to 

the original resolution of the input image. Figure 3(b) illustrates 

the proposed MSFU block consisting of a 1 1 convolutional 

layer to reduce the number of feature maps (halving them) and 

an upconvolutional layer with 2 ⇥ 2 kernel size and a stride of 2, 
 

263 respectively. 
 

317 transforming low-resolution feature maps to higher resolution 
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268 

 
269 

In  the  following  Sections,  we  first  describe  how  the  input318 

features were generated by decomposing 3D data into 2D im-319 

ages.  Then, we describe the proposed network architecture in320 

details  and  the  training  procedure.   Finally,  we  introduce  the321 

multi-plane reconstruction block, which defines how we com-322 

bined the 2D binary slices of the network output to match the323 

maps. Then, a concatenation layer is used to combine the two 

sets of feature maps, followed by a 1 1 convolutional layer to 

reduce the number of feature maps (halving them) and a 3 3 

convolutional layer for adaptation. 

After the last MSFU block, a soft-max layer of size 2 is used 

to generate the output probability maps of the lesions. In our 
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276 

original 3D data. 

 
3.2.1. Input Features Preparation 

For each MRI volume (and each modality), three di↵erent 
plane orientations (axial, coronal and sagittal) were considered 
in order to generate 2D slices along x, y, and z axes.   Since 

the size of each slice depends on the orientation (axial=182 ⇥ 
218, coronal=182 ⇥ 182, sagittal=218 ⇥ 182), they were zero- 
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329 

 
330 

 
331 

experiments the probabilistic maps were thresholded at 0.5 to 

generate binary classification for each pixel (lesion vs. non- 

lesion). It is important to mention that in all proposed blocks 

before each convolutional and upconvolutional layer, we use a 

batch normalization layer (Io↵e and Szegedy, 2015) followed 
by a rectifier linear unit activation function (Nair and Hinton, 
2010). Size and number of feature maps in the input and output 

of all convolutional layers are kept the same. 

 

277 

 
278 

padded (centering the brain) to obtain equal size (218   218) for 

each plane orientation. This procedure was applied to all three 
333 

3.2.3. Implementation Details 
The proposed model was implemented in Python language2 

 

279 

 280 

modalities. Figure 1 illustrates the described procedure using 
FLAIR, T1w, and T2w modalities. This approach is similar to 

 
 

334 using Keras3 (Chollet et al., 2015) with Tensorflow4 (Abadi 
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283 

the one proposed in (Roth et al., 2014), where they used a 2.5D 

representation of 3D data. 

 
3.2.2. Network Architecture Details 
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339 

et al., 2015) backend. All experiments were done on a Nvidia 

GTX Titan X GPU. Our multi-branch slice-based network was 

trained end-to-end. In order to train the proposed CNN, we cre- 

ated a training set including the 2D slices from all three orthog- 

onal views of the brain, as described in Section 3.2.1. Then, to 

284 
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288 

The proposed model essentially integrates multiple ResNets340 

with other blocks to handle multi-modality and multi-resolution341 

approaches, respectively.  As can be seen in Figure 2, the pro-342 

posed network includes three main parts:  downsampling net-343 

works,  multi-modal  feature  fusion  using  MMFF  blocks,  and344 

limit extremely unbalanced data and omit uninformative sam- 

ples, a training subset was determined by selecting only slices 

containing at least one pixel labeled as lesion. Considering that 

for each subject in the ISBI dataset, there were 4 to 6 record- 

ings, the number of slices selected per subject ranged approxi- 

289 multi-scale upsampling using MSFU blocks. 
 

345 mately from 1500 to 2000. In the NRU dataset, the number of 
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299 
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302 

In the downsampling stage, multiple parallel ResNets (with-346 

out  weights  sharing)  are  used  for  extracting  multi-resolution347 

features,  with  each  ResNet  associated  to  one  specific  modal-348 

ity (in our experiments, we used FLAIR, T1w, and T2w).  In349 

the original ResNet50 architecture, the first layer is composed350 

of a 7     7 convolutional layer with stride 2 to downsample the351 

input by an order of 2.  Then, a 3     3 max pooling layer with352 

stride  2  is  applied  to  further  downsample  the  input  followed353 

by  a  bottleneck  block  without  downsampling.   Subsequently,354 

three other bottleneck blocks are applied, each one followed by 

a downsampling convolutional layer with stride 2. 

Therefore, ResNet50 can be organized into five blocks ac- 

cording to the resolution of the generated feature maps (109 ⇥ 

slices ranged approximately from 150 to 300 per subject. 

To optimize the network weights and early stopping criterion, 

the created training set was divided into training, and validation 

subsets, depending on the experiments described in the follow- 

ing Section (In all experiments, the split was performed on the 

subject base, to simulate a real clinical condition). We trained 

our network using the Adam optimizer (Kingma and Ba, 2014) 

with an initial learning rate of 0.0001 multiplied by 0.95 ev- 

ery 400 steps. The size of mini-batches was fixed at 15 and 

 
2https://www.python.org 
3https://keras.io 
4https://www.tensorflow.org 

http://www.python.org/
http://www.tensorflow.org/
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4.1 for details). Indeed, a performance plateau was systemat- 

ically observed over all experiments before 1000 epochs.  The375
 

 

 
 

Figure 4: The MPR block produces a 3D volumetric binary map by combining the 2D output binary maps of the network.   First, the output 2D binary maps 

associated to each plane orientation (axial, coronal, and sagittal) are concatenated to create three 3D binary maps. Then, a majority vote is applied to obtain a single 

lesion segmentation volume. 

 
 

355 

 
356 

 
357 

 
358 

each mini-batch included random slices from di↵erent orthogo-373 

nal views. The maximum number of training epochs was fixed374 

to 1000 for all experiments, well beyond the average converging 

rate. Figure 5 illustrates an example of performance evolution 

ResNets. The soft Dice Loss function (DL) was used to train 

the proposed network: 

2 
PN gi pi 

 

   
359 during training of the network in terms of mean DSC (refer to 

  i  PN gi
2 + 

PN  pi
2

 

(1) 

362 

 
363 

 
364 

best model was then selected according to the validation set. In376
 

the case shown on Figure 5, the best performance was obtained377 

at epoch 810.  The training computation time for 1000 epochs378 

where pi [0, ..., 1] is the predicted value of the soft-max 
layer and gi is the ground truth binary value for each pixel i. 

We slightly modified the original soft dice loss (Milletari 
 

365 was approximately 36 hours. 379 et al., 2016) by replacing (-Dice) with (1-Dice) for visualiza- 
 

366 

 
367 

 
368 

 
369 

Regarding  the  network  initialization,  in  the  downsampling380 

branches, we used ResNet50 pre-trained on ImageNet and all381 

other blocks (MMFFs and MSFUs) were randomly initialized382
 

from a Gaussianpdistribution with zero mean and standard de- 

tion purposes. Indeed, the new equation returns positive values 

in the range [0, ..., 1]. This change does not impact the opti- 
mization. 

 

370 viation equal to 2/(a + b) where a and b are respectively the 
 

383 3.2.4. 3D Binary Image Reconstruction 
 

371 

 
372 

number of input and output units in the weight tensor. It is 

worth noticing that we did not use parameter sharing in parallel 

 

 
384 

 
385 

 
386 

 
387 

 
388 

 
389 

 
390 

 
391 

 
392 

 
393 

 
394 

 
395 

 
396 

 
397 

Output binary slices of the network are concatenated to form 

a 3D volume matching the original data. In order to reconstruct 

the 3D image from the output binary 2D slices, we proposed 

a multi-planes reconstruction (MPR) block. Feeding each 2D 

slice to the network, we get as output the associated 2D binary 

lesion classification map. Since each original modality is du- 

plicated three times in the input, once for each slice orientation 

(coronal, axial, sagittal), concatenating the binary lesion maps 

belonging to the same orientation results in three 3D lesion clas- 

sification maps. To obtain a single lesion segmentation volume, 

these three lesion maps are combined via majority voting (the 

most frequent lesion classification are selected) as illustrated in 

Figure 4. To justify the choice of majority voting instead of 

other label fusion methods, refer to Appendix B. 
 

Figure 5: Example of DSC metric dynamics (eq. 2) during training on ISBI 

dataset. Experimentally, we found that a performance plateau was systemati-398 

cally reached before 1000 training epochs. To avoid overfitting, the best model 

was selected according to the validation set performance. In this specific ex- 

periment (training: subjects 1 to 4, validation: subject 5), the best model was399 

selected based at epoch 810, which corresponded to the performance peak on400
 

 
3.3. Data and Code Availability Statement 

 
The NRU dataset is a private clinical dataset and can not be 

made publicly available due to confidentiality. The code will be 

validation set. 401 made available to anyone contacting the corresponding authors. 

i i 

DL = 1 – 
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403 

4. Experiments 

4.1. Evaluation Metrics 

• Overall evaluation score: 

SC =
  1      

· 
X 

DSC 
+ 

PPV 
+ 

1 – LFPR 
+ 

LTPR 
+ 

Cor 
!
 

 
404 

 
405 

The following measures were used to evaluate and compare 

our model with other state-of-the-art methods. 

|R| · |S | 
R,S 

8 8 4 4 4 

(9) 

• Dice Similarity Coefficient: 

426 

427 

where S is the set of all subjects, R is the set of all raters 

and Cor is the Pearson’s correlation coefficient of the vol- 

DSC 
  2TP  

= 
FN + FP + 2TP 

(2)
 

428 

429 

umes. 

4.2. Experiments on the ISBI Dataset 
406 

407 

where TP, FN and FP indicate the true positive, false neg- 

ative and false positive voxels, respectively. 

• Lesion-wise True Positive Rate: 

 
 

430 

 
431 

 
432 

To evaluate the performance of the proposed method on the 

ISBI dataset, two di↵erent experiments were performed accord- 
ing to the availability of the ground truth. 

LTPR 
LTP 

 

433 Since the ground truth was available only for the training set, 

=  
RL 

(3)434 

435 

in the first experiment, we ignored the official ISBI test set. We 
only considered data with available ground truth (training set 

 

408 

 
409 

 
410 

 
411 

where LTP denotes the number of lesions in the reference 

segmentation that overlap with a lesion in the output seg- 

mentation (at least one voxel overlap), and RL is the total 

number of lesions in the reference segmentation. 

• Lesion-wise False Positive Rate: 
LFP 

 
436 

 
437 

 
438 

 
439 

 
440 

 
441 

with 5 subjects) as mentioned in (Brosch et al., 2016). To obtain 

a fair result, we tested our approach with a nested leave-one- 

subject-out cross-validation (3 subjects for training, 1 subject 

for validation and 1 subject for testing - refer to Appendix A 

for more details). To evaluate the stability of the model, this 

experiment was performed evaluating separately our method on 

LFPR = (4)442 

443 

the two sets of masks provided by the two raters. 

In the second experiment, the performance of the proposed 
 

412 

 
413 

 
414 

where  LFP  denotes  the  number  of  lesions  in  the  output444 

segmentation that do not overlap with a lesion in the refer-445 

ence segmentation and PL is the total number of lesions in446 

method was evaluated on the official ISBI test set (with 14 sub- 
jects), for which the ground truth was not available, using the 
challenge web service. We trained our model doing a leave- 

415 the produced segmentation. 

• Average Symmetric Surface Distance: 

 

447 

 
448 

 
449 

one-subject-out cross-validation on the whole training set with 

5 subjects (4 subjects for training and 1 subject for validation - 
refer to Appendix A for more details). We executed the ensem- 

 

SD = 
· 

0

B
B@ 

X
  

min d(x, y) + 
X 

min d(x, y)

1

C 

 
450 

 
451 

ble of 5 trained models on the official ISBI test set and the final 
prediction was generated with a majority voting over the en- 

 
416 

 
417 

 
418 

where Ns and Ngt are the set of voxels in the contour of 

the automatic and manual annotation masks, respectively.454 

d(x, y) is the Euclidean distance (quantified in millimetres) 

 
4.3. Experiment on the NRU Dataset 

 
419 between voxel x and y. 

• Hausdor↵ Distance: 

( 
 

455 

 
456 

 
457 

) 458 

 

To test the robustness of the proposed model, we performed 
two experiments using the NRU dataset including 37 subjects. 

In the first experiment, we implemented a nested 4-fold cross- 

validation over the whole dataset (21 subjects for training, 7 

 
x2Ngt y2Ns x2Ns y2Ngt 460 

 461 

pendix A for more details). Since for each test fold we had an 
ensemble of four nested trained models, the prediction on each 

 

420 

 
421 

 
422 

As described in (Carass et al., 2017), the ISBI challenge web- 

site provides a report on the submitted test set including some 

measures such as: 

• Positive Prediction Value: 

 
 

462 

 
463 

 
464 

 
465 

test fold was obtained as a majority vote of the corresponding 

ensemble. To justify the use of majority voting instead of other 

label fusion methods, we repeated the same experiment using 

di↵erent volume aggregation methods (refer to Appendix B for 

PPV 
     TP  466 more details). 

= 
TP + FP 

(7)467
 

468 

For comparison, we tested three di↵erent publicly available 
MS lesion segmentation software: OASIS (Automated Statistic 

• Absolute Volume Di↵erence: 
|TPs – TPgt | 

 
 

469 

 
470 

Inference for Segmentation) (Sweeney et al., 2013), TOADS 
(Topology reserving Anatomy Driven Segmentation) (Shiee 

VD = 
TPgt 

(8)471 

472 

et al., 2010), and LST (Lesion Segmentation Toolbox)(Schmidt 
et al., 2012). OASIS generates the segmentation exploiting in- 

 

423 

 
424 

where  TPs  and  TPgt  reveal  the  total  number  of  the  seg-473 

mented lesion voxels in the output and manual annotations474 

formation from FLAIR, T1w, and T2w modalities, and it only 

requires a single thresholding parameter, which was optimized 
 

425 masks, respectively. 
 

475 to obtain the best DSC. TOADS does not need parameter tuning 

subjects for validation and 9 subjects for testing - refer to Ap- (6)459 HD = max 

semble. The 3D output binary lesion maps were then submitted 

to the challenge website for evaluation. 

PL 

|Ngt | + |Ns| 
452 

(5)453 

max min d(x, y), max min d(x, y) 

  1  
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⇥ ⇥ 

 
Table 1: Comparison of our method with other state-of-the-art methods in the first ISBI dataset experiment (in this experiment, only images with available ground 
truth were considered). GT1 and GT2 denote the corresponding model was trained using annotation provided by rater 1 and rater 2 as ground truth, respectively (the 

model was trained using GT1 and tested using both GT1 and GT2 and vice versa). Mean values of DSC, LTPR, and LFPR for di↵erent methods are shown. Values 
in bold and italic refer to the first-best and second-best values of the corresponding metrics, respectively.  

Method  Rater 1   Rater 2  

 DSC LTPR LFPR DSC LTPR LFPR 
Rater 1 - - - 0.7320 0.6450 0.1740 

Rater 2 0.7320 0.8260 0.3550 - - - 

Maier and Handels (2015) (GT1) 0.7000 0.5333 0.4888 0.6555 0.3777 0.4444 

Maier and Handels (2015) (GT2) 0.7000 0.5555 0.4888 0.6555 0.3888 0.4333 

Brosch et al. (2016) (GT1) 0.6844 0.7455 0.5455 0.6444 0.6333 0.5288 

Brosch et al. (2016) (GT2) 0.6833 0.7833 0.6455 0.6588 0.6933 0.6199 

Aslani et al. (2019) (GT1) 0.6980 0.7460 0.4820 0.6510 0.6410 0.4506 

Aslani et al. (2019) (GT2) 0.6940 0.7840 0.4970 0.6640 0.6950 0.4420 

Ours (GT1) 0.7649 0.6697 0.1202 0.6989 0.5356 0.1227 

    Ours (GT2) 0.7646 0.7002 0.2022 0.7128 0.5723 0.1896  

 

Table 2: Results related to the top-ranked methods (with published papers or technical reports) evaluated on the official ISBI test set and reported on the ISBI 
challenge website. SC, DSC, PPV, LTPR, LFPR, and VD are mean values across the raters. For detailed information about the metrics, refer to Section 4.1. Values 
in bold and italic refer to the metrics with the first-best and second-best performances, respectively.  

Method SC DSC PPV LTPR LFPR VD 

Hashemi et al. (2018) 92.48 0.5841 0.9207 0.4135 0.0866 0.4972 

Ours 92.12 0.6114 0.8992 0.4103 0.1393 0.4537 

Andermatt et al. (2017) 92.07 0.6298 0.8446 0.4870 0.2013 0.4045 

Valverde et al. (2017) 91.33 0.6304 0.7866 0.3669 0.1529 0.3384 

Maier and Handels (2015) 90.28 0.6050 0.7746 0.3672 0.2657 0.3653 

Birenbaum and Greenspan (2016) 90.07 0.6271 0.7889 0.5678 0.4975 0.3522 

Aslani et al. (2019) 89.85 0.4864 0.7402 0.3034 0.1708 0.4768 

Deshpande et al. (2015) 89.81 0.5960 0.7348 0.4083 0.3075 0.3762 

Jain et al. (2015) 88.74 0.5560 0.7300 0.3225 0.3742 0.3746 

Sudre et al. (2015) 87.38 0.5226 0.6690 0.4941 0.6776 0.3837 

Tomas-Fernandez and Warfield (2015) 87.01 0.4317 0.6973 0.2101 0.4115 0.5109 

    Ghafoorian et al. (2017) 86.92 0.5009 0.5491 0.4288 0.5765 0.5707  

 
 

476 

 
477 

 
478 

 
479 

and it only requires FLAIR and T1w modalities for segmenta-506 

tion.   Similarly,  LST works with FLAIR and T1w modalities507 

only.   However,  it needs a single thresholding parameter that508 

initializes  the  lesion  segmentation.   This  parameter  was  opti-509 

which to validate the proposed method. Nevertheless, to eval- 

uate the stability of the model trained with the gold standard 

labeling, we also tested it separately on the two sets of masks 

(refer to Appendix C for more details). 
 

480 mized to get the best DSC in this experiment.  
510 In the second experiment, to investigate the importance of 

 
481 

 
482 

 
483 

 
484 

 
485 

 
486 

 
487 

 
488 

 
489 

 
490 

 
491 

We also tested the standard 2D U-Net (Ronneberger et al.,511 

2015),  repeating  the  training  protocol  described  in  Appendix512 

A. Indeed, we used the same training set as described in Sec-513 

tion 3.2.1 and 3.2.3, with the di↵erence that 2D slices from all514 

modalities were aggregated in multiple channels. This network515 

was trained using the Adam optimizer (Kingma and Ba, 2014)516 

with an initial learning rate of 0.0001 multiplied by 0.9 every517 

800 steps.  For the sake of comparison, optimization was per-518 

formed on the soft Dice Loss function (eq. 1) (Milletari et al.,519 

2016).  To get the 3D volume from output binary slices of the520 

network, we used the proposed MPR block as described in Sec-521 

each single modality in MS lesion segmentation, we evaluated 

our model with various combinations of modalities. This means 

that the model was adapted in the number of parallel branches 

in the downsampling network. In this experiment, we randomly 

split the corresponding dataset into fixed training (21 subjects), 

validation (7 subjects) and test (9 subjects) sets. 

Single-branch (SB): In a single-branch version of the pro- 
posed model, we used a single ResNet as the downsampling 

part of the network. Attributes from di↵erent levels of the 
single-branch were supplied to the MMFF blocks. In this ver- 
sion of our model, each MMFF block had single input since 

 

492 tion 3.2.4.  
522 there was only one downsampling branch. Therefore, MMFF 

 
493 

 
494 

 
495 

 
496 

 
497 

 
498 

 
499 

 
500 

Di↵erences in performance metrics between our method and523 

each of the 4 other methods were statistically evaluated with524 

resampling.  For a given method M and metric C, resampling525 

was performed by randomly assigning the sign of the di↵erence526 

for  each  subject  in  C  between  method  M  and  our  method  in527 

10 million samples.  The test was two-sided and corrected for528 

multiple comparisons with Holm’s method (28 comparisons in529 

total with 7 metrics assessed for the 4 methods to compare ours530 

blocks included a 1 1 convolutional layer followed by a 3 3 

convolutional layer. We trained and tested the single-branch 

version of our proposed network with each modality separately 

and also with a combination of all modalities as a multi-channel 

input. 

Multi-branch (MB): The multi-branch version of the pro- 

posed model used multiple parallel ResNets in the downsam- 

pling network without weights sharing. In this experiment, we 
501 with). The alpha significance threshold level was set to 0.05.  

531 used two-branch and three-branch versions, which were trained 
 

502 

 
503 

 
504 

 
505 

As  outlined  in  Section  2.2,  while  for  the  ISBI  dataset,  we532 

evaluated our method on two separate sets of masks,  one for533 

each rater, in the NRU dataset, we considered the manual con-534 

sensus  segmentation  as  a  more  robust  gold  standard  against535 

and tested using two modalities and three modalities, respec- 

tively. We trained and tested the mentioned models with all pos- 

sible combination of modalities (two-branches: [FLAIR, T1w], 

[FLAIR, T2w], [T1w, T2w] and three-branches: [FLAIR, T1w, 
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Table 3: Results related to the first NRU dataset experiment. Mean values of DSC, PPV, LTPR, LFPR, VD, SD and HD were measured for di↵erent methods. Values 
in bold and italic indicate the first-best and second-best results.  

Method DSC PPV LTPR LFPR VD SD HD 

TOADS (Shiee et al., 2010) 0.5241 0.5965 0.4608 0.6277 0.4659 5.4392 13.60 

LST (Schmidt et al., 2012) 0.3022 0.5193 0.1460 0.3844 0.6966 7.0919 14.35 

OASIS (Sweeney et al., 2013) 0.4193 0.3483 0.3755 0.4143 2.0588 3.5888 18.33 

U-NET (Ronneberger et al., 2015) 0.6316 0.7748 0.3091 0.2267 0.3486 3.9373 9.235 

OURS 0.6655 0.8032 0.4465 0.0842 0.3372 2.5751 6.728 

 

 

Table 4: The proposed model was tested with di↵erent combinations of the three modalities in the second NRU dataset experiment. SB and MB denote the single- 

branch and multi-branch versions of the proposed model, respectively. Mean values of DSC, PPV, LTPR, LFPR, VD, SD and HD were measured for di↵erent 
methods. Values in bold and italic indicate the first-best and second-best values.  

Method Set of Modalities DSC PPV LTPR LFPR VD SD HD 

SB FLAIR 0.6531 0.5995 0.6037 0.2090 0.3034 1.892 9.815 

T1w 0.5143 0.5994 0.3769 0.2738 0.3077 4.956 8.201 

T2w 0.5672 0.5898 0.4204 0.2735 0.1598 4.733 9.389 

FLAIR, T1w, T2w 0.6712 0.6029 0.6095 0.2080 0.2944 1.602 9.989 
MB FLAIR, T1w 0.6624 0.6109 0.6235 0.2102 0.2740 1.727 9.526 

FLAIR, T2w 0.6630 0.6021 0.6511 0.2073 0.3093 1.705 9.622 

T1w, T2w 0.5929 0.6102 0.4623 0.2309 0.1960 4.408 9.004 

  FLAIR, T1w, T2w 0.7067 0.6844 0.6136 0.1284 0.1488 1.577 8.368  

 
 

536        T2w]).  
569 Figure 7 features boxplots of the DSC, LFPR, LTPR, PPV, 

  
570 VD, SD and HD evaluation metrics obtained from the di↵erent 

537        5. Results 
571        methods and summarized in Table 3. This Figure shows sta- 
572        tistically significant di↵erences between model performances 

538        5.1. ISBI Dataset 573        for most metrics and methods when compared to ours, after 
 

539 

 
540 

 
541 

 
542 

In the first experiment, we evaluated our model using three 

measures: DSC, LTPR, and LFPR to make our results com- 

parable to those obtained in (Brosch et al., 2016; Maier and 

Handels, 2015; Aslani et al., 2019). Table 1 summarizes the 

 

574 

 
575 

 
576 

 
577 

multiple comparison correction with the conservative Holm’s 

method. The output segmentation of all methods applied to a 

random subject (with medium lesion load) can be seen with dif- 

ferent plane orientations in Figure 8. 
 

543 

 
544 

 
545 

 
546 

 
547 

 
548 

 
549 

 
550 

results of the first experiment when comparing our model with578 

previously proposed methods. The table shows the mean DSC,579 

LTPR, and LFPR. As can be seen in that table, our method out-580 

performed other methods in terms of DSC and LFPR, while the581 

highest LTPR was achieved by our recently published method582 

(Aslani et al., 2019).  Figure 6 shows the segmentation outputs583 

of the proposed method for subject 2 (with high lesion load)584 

and subject 3 (with low lesion load) compared to both ground585 

Figure 9 depicts the relationship between the volumes of all 

ground truth lesions and the corresponding estimated size for 

each evaluated method (one datapoint per lesion). With a qual- 

itative evaluation, it can be seen that TOADS and OASIS meth- 

ods tend to overestimate lesion volumes as many lesions are 

above the dashed black line, i.e., many lesions are estimated 

larger than they really are. On the contrary, LST method tends 

to underestimate the lesion sizes. U-Net and our method, on 
551 truth annotations (rater 1 and rater 2).  

586 the contrary, produced lesions with size more comparable to 
 

552 

 
553 

 
554 

 
555 

 
556 

 
557 

 
558 

 
559 

 
560 

In the second experiment, the official ISBI test set was used.587 

Indeed,  all 3D binary output masks computed on the test set588 

were  submitted  to  the  ISBI  website.   Several  measures  were589 

calculated online by the challenge website.  Table 2 shows the590 

results on all measures reported as a mean across raters. At the591 

time of the submission, our method had an overall evaluation592 

score of 92.12 on the official ISBI challenge web service5, mak-593 

ing it amongst the top-ranked methods with a published paper594 

or a technical report. 

the ground truth. However, with a quantitative analysis, our 
model produced the slope closest to unity (0.9027) together 

with the highest Pearson correlation coefficient (0.75), meaning 
our model provided the stronger global agreement between esti- 

mated and ground truth lesion volumes (note that a better agree- 

ment between lesion volumes does not mean the segmented and 

ground truth lesions better overlap – the amount of overlap was 

measured with the DSC). 

 

 

 
561 
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565 

 
566 

 
567 

 
568 

 
5.2. NRU Dataset 

Table 3 reports the results of the first experiment on NRU 

dataset showing the mean values of DSC, LFPR, LTPR, PPV, 

VD, SD and HD. It summarizes how our method performed 

compared to others. As shown in the table, our method achieved 

the best results with respect to DSC, PPV, LFPR, VD, SD and 

HD measures while showing a good trade-o↵ between LTPR 
and LFPR, comparable to the best results of the other methods. 

 
5http://iacl.ece.jhu.edu/index.php/MSChallenge 

595 

 
596 

 
597 

 
598 

 
599 

 
600 

 
601 

 
602 

 
603 

 
604 

 
605 

 
606 

Table 4 shows the performance of the proposed model with 

respect to di↵erent combinations of modalities in the second 
experiment. The SB version of the proposed model used with 

one modality had noticeably better performance in almost all 

measures when using FLAIR modality. However, all modalities 

carry relevant information as better performance in most met- 

rics was obtained when using a combination of modalities. In 

MB versions of the model, all possible two-branch and three- 

branch versions were considered. As shown in Table 4, two- 

branch versions including FLAIR modality showed a general 

better performance than the single-branch version using sin- 

gle modality. This emphasizes the importance of using FLAIR 

http://iacl.ece.jhu.edu/index.php/MSChallenge
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Figure 6: Output segmentation results of the proposed method on two subjects of the ISBI dataset compared to ground truth annotations provided by rater 1 and 

rater 2. From left to right, the first three columns are related to subject 2 with high lesion load and reported DSC values of 0.8135 and 0.8555 for rater 1 and rater 2, 

respectively. Columns 4 to 6 are related to the subject 3 with low lesion load and reported DSC values of 0.7739 and 0.7644 for rater 1 and rater 2, respectively. On 

all images, true positives, false negatives, and false positives are colored in red, green and blue, respectively. 

 
 

607 

 
608 

 
609 

modality together with others (T1w and T2w). However, over-625 

all, a combination of all modalities in the three-branch version626 

of the model showed the best general performance compared to627 

ResNet50s pre-trained on ImageNet as a multi-branch down- 

sampling network while the other layers in MMFF and MSFU 

blocks were randomly initialized from a Gaussian distribution. 
 

610 

 
 
 

 
611 

the other versions of the network. 

 
6. Discussion and Conclusions 

 

628 

 
629 

 

630 

 
631 

We then fine-tuned the whole network on the given MS lesion 

segmentation task. 

In brain image segmentation, a combination of MRI modal- 

ities overcomes the limitations of single modality approaches, 
 

612 

 
613 

 
614 

 
615 

 
616 

 
617 

In  this  work,  we  have  designed  an  automated  pipeline  for632 

MS  lesion  segmentation  from  multi-modal  MRI  data.    The633 

proposed  model  is  a  deep  end-to-end  2D  CNN  consisting  of634 

a  multi-branch  downsampling  network,  MSFF  blocks  fusing635 

the features from di↵erent modalities at di↵erent stages of the636 

network, and MSFU blocks combining and upsampling multi-637 

allowing the models to provide more accurate segmentations 

(Kleesiek et al., 2016; Moeskops et al., 2016; Aslani et al., 

2019). Unlike previously proposed deep networks (Brosch 

et al., 2016; Aslani et al., 2019), which stacked all modali- 

ties together as a single input, we designed a network with 

several downsampling branches, one branch for each individ- 
 

618 scale features. 
 

638 ual modality. We believe that stacking all modalities together 
 

619 

 
620 

 
621 

 
622 

 
623 

 
624 

When having insufficient training data in deep learning based639 

approaches,  which  is  very  common  in  the  medical  domain,640 

transfer learning has demonstrated to be an adequate solution641 

(Chen et al., 2015, 2016; Hoo-Chang et al., 2016).  Not only it642 

helps boosting the performance of the network but also it sig-643 

nificantly reduces overfitting.  Therefore, we used the parallel644 

as a single input to a network is not an optimal solution since 

during the downsampling procedure, the details specific to the 

the most informative modalities can vanish when mixed with 

less informative modalities. On the contrary, the multi-branch 

approach allows the network to abstract higher-level features 

at di↵erent granularities specific to each modality. Indepen- 
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Figure 7: Boxplots showing the performance of tested models with all measures on NRU dataset. Among all methods, the proposed one had the best trade-o↵ 
between the lesion-wise true positive rate and lesion-wise false positive rate, while having the best mean value for dice similarity coefficient, positive prediction 

value, absolute volume di↵erences, mean surface distance and hausdor↵ distance. Statistically significant di↵erences between our method and the others were 

assessed using resampling statistics with multiple comparison correction. The significance threshold was set as ↵ = 0.05. p-values were annotated as follows: ’*’ 

for p < 0.05, ’**’ for p < 0.005, ’***’ for p < 0.0005, and ’n.s.’ for non-significant values. 
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646 

 647 

dently  of  the  ground  truth  used  for  training  and  testing  the655 

model, results in Table 1 confirm our claim showing that a net-656 

work with separate branches generated more accurate segmen- 

umes. The proposed method, instead, showed the best trade-o↵ 
between LTPR and LFPR. 
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654 

tations (e.g., DSC=0.7649) than single-branch networks with 
all modalities stacked, as proposed by Brosch et al. (2016) (e.g., 

DSC=0.6844) and Aslani et al. (2019) (e.g., DSC=0.6980). 
Indeed, the mentioned methods (single-branch) generally ob- 

tained higher LTPR values (e.g., 0.7455 and 0.7460) than multi- 

branch (e.g., 0.6697). However, they also obtained very high 

LFPR values showing a significant overestimation of lesion vol- 

657 

 
658 

 
659 

 
660 

 
661 

 
662 

 
663 

 
664 

When examining the influence of di↵erent modalities, results 
in Table 4 demonstratesin Table 4 demonstrated that the most 

important modality for that the most important modality for MS 

lesion segmentation was FLAIR (DSC>0.65). This is likely due 
to the fact that FLAIR sequences benefit from CSF signal sup- 

pression and hence provide a higher image contrast between 

MS lesions and the surrounding normal appearing WM. Us- 

ing all modalities together in a SB network (by concatenating 
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Figure 8: Output segmentation results of the di↵erent methods for one subject with medium lesion load from the NRU dataset compared with ground truth annotation. 
Reported DSC values for TOADS, OASIS, LST, U-Net and our proposed method for this subject are 0.7110, 0.4266, 0.6505, 0.7290 and 0.7759, respectively. On 
all images, true positives, false negatives, and false positives are colored in red, green and blue, respectively. 
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680 

them as single multi-channel input) and in a MB network (each681 

modality as single input to each branch) showed good segmen-682 

tation performance.  This could be due to the combination of683 

modalities  helping  the  algorithm  identifying  additional  infor-684 

mation regarding the location of lesions.  However, supporting685 

our claim that stacking all modalities together as a single in-686 

put to the network is not an optimal solution, top performance,687 

indeed, was obtained in most measures with the MB network688 

when using all available modalities, as can be seen in Table 4. 689 

690 

In deep CNNs,  attributes from di↵erent layers include dif-691 

ferent information.  Coarse layers are related to high-level se-692 

mantic information (category specific), and shallow layers are693 

related  to  low-level  spatial  information  (appearance  specific)694 

(Long et al., 2015), while middle layer attributes have shown a 

significant impact on segmentation performance (Ronneberger695 

et al., 2015).  Combining these multi-level attributes from the696 

di↵erent stages of the network makes the representation richer 
than using single-level attributes, like in the CNN based method 

proposed by Brosch et al. (2016), where a single shortcut con- 

nection between the deepest and the shallowest layers was used. 

Our model, instead, includes several shortcut connections be- 

tween all layers of the network, in order to combine multi- 

scale features from di↵erent stages of the network as inspired 
by U-Net architecture (Ronneberger et al., 2015). The results 

shown in Table 1 suggest that the combination of multi-level 

features during the upsampling procedure helps the network ex- 

ploiting more contextual information associated to the lesions. 

This could explain why the performance of our proposed model 

(DSC=0.7649) is higher than the method proposed by Brosch 

et al. (2016) (DSC=0.6844). 

Patch-based CNNs su↵er from lacking spatial information 
about the lesions because of the patch size limitation. To deal 
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⇠ 

 

 
 

Figure 9: Comparison of the lesion volumes produced by manual and automatic segmentation on the NRU dataset with di↵erent methods. Each point is associated 
with a single lesion. Colored (solid) lines indicate the correlation between manual and segmented lesion volumes. Black (dotted) lines indicate the ideal regression 

line. Slope, intercept, and Pearson’s linear correlation (all with p << 0.001) between manual and estimated masks can also be seen for di↵erent methods. 
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with this problem, we proposed a whole-brain slice-based ap-720 

proach.  Compared with patch-based methods (Valverde et al.,721 

2017; Ghafoorian et al., 2017), we have shown that our model722 

has better performance for most measures, as seen in Table 2.723 

Although the CNN proposed by Valverde et al. (2017) had the724 

highest DSC value among all, our method showed better per-725 

formance regarding the LTPR and LFPR, which indicates that726 

our  model  is  robust  in  identifying  the  correct  location  of  le-727 

sions.    The  method  proposed  by  Birenbaum  and  Greenspan728 

(2016) has been optimized to have the highest LTPR. However,729 

their method showed significantly lower performance in LFPR.730 

Compared with this method, our method has better trade-o↵ be- 

The proposed method also has some limitations. We ob- 

served that the proposed pipeline is slightly slow in segment- 

ing a 3D image since segmenting whole-brain slices takes a 

longer time compared to other CNN-based approaches (Roy 

et al., 2018). The time required to segment a 3D image is pro- 

portional to the size of the image and is based on the computa- 

tional cost of three sequential steps: input features preparation 

3.2.1, slice-level segmentation 3.2.2, and 3D image reconstruc- 

tion 3.2.4. In both the ISBI and NRU datasets, the average time 

for segmenting an input image with our model, including all 3 

steps, was approximately 90 seconds. 

 
709 tween LTPR and LFPR. 

 

731 

 
732 

A still open problem in MS lesion segmentation task is the 

identification of cortical and subcortical lesions. To this aim, 
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718 

As mentioned in (Carass et al., 2017), manual delineation of733 

MS lesions from MRI modalities is prone to intra- and inter-734 

observer variability, which explains the relatively low DSC be-735 

tween two experts delineating the same lesions (   0.73 for ISBI736 

data as shown in Table 1).  Automated methods are therefore737 

expected to have a maximum performance in the same order of738 

magnitude when comparing their generated segmentation with739 

the rater’s one.  Accordingly, it is important to notice that, our740 

model obtained a performance (DSC) close to the experts agree-741 

we plan to use other MRI modalities such as double inversion 

recovery (DIR) sequences for the identification of cortical le- 

sions, which benefits of the signal suppression from both CSF 

and WM. Moreover, we believe that introducing information 

from the tissue class could help improve the network identify- 

ing cortical, subcortical and white matter lesions. Therefore, 

we think that would be very promising to design a multi-task 

network for segmenting di↵erent parts of brain including dif- 

ferent tissue types (WM, GM, CSF) and di↵erent types of MS 
719 ment, as can be seen in Table 1. 742 lesions (including cortical lesions). 
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Table B.1: This table shows the results of the first experiment on the NRU dataset using our model as described in Section 4.2.   We implemented the same 

experiment using di↵erent methods for fusing output volumes (when merging the outputs from each plane orientation, and also when merging the outputs of models 

from di↵erent cross-validation folds). Mean values of DSC, PPV, LTPR, LFPR, VD, SD and HD were measured for each method. Values in bold and italic indicate 
the first-best and second-best results.  

Method DSC PPV LTPR LFPR VD SD HD 
 

Majority Voting 0.6655 0.8032 0.4465 0.0842 0.3372 2.575 6.728 

Averaging 0.5883 0.8391 0.3220 0.0788 0.4625 3.216 8.503 

    STAPLE (Warfield et al., 2004) 0.6632 0.7184 0.3989 0.0802 0.3883 2.330 8.629  

 

Table C.1: This table indicates the performance of our trained model in the NRU dataset first experiment when using di↵erent ground truth masks as testing. Mean 
values of DSC, PPV, LTPR, LFPR, VD, SD and HD were measured for each method. Values in bold and italic indicate the first-best and second-best results. 

Method  DSC  PPV LTPR LFPR  VD  SD  HD 

Rater1 0.6827 0.8010 0.5039 0.0977 0.3727 2.085 6.704 

Rater2 0.6607 0.7784 0.4458 0.0860 0.3638 2.511 7.009 

    Gold Standard (Consensus Mask) 0.6655 0.8032 0.4465 0.0842 0.3372 2.575 6.728  
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Since the assessment of the disease burden from MRI of 

MS patients requires the quantification of the volume of hy- 

perintense lesions on T2-weighted images, the final goal of the 

method proposed was to obtain an automatic and robust MS 

lesion segmentation tool. This will be particularly useful to fa- 

cilitate scaling advanced MS analysis based on myelin imaging 

(Dayan et al., 2017) or multi-modal characterization of white 

matter tracts (Dayan et al., 2016) to large datasets. The long 

term goal, more generally, is the translation of this automatic 

method into a clinical tool. However, to be fully ready for clini- 

cal applications, the method should be also validated on healthy 

subjects and in a longitudinal framework. The test on healthy 

subjects needs to be done to evaluate the amount of false pos- 

itives generated by any approach on healthy brain scans. The 

experiments in a longitudinal framework are useful to assess the 

model reliability and capability to identify new, enlarged and 

stable lesions. Moreover, still exploiting ISBI dataset, which 

includes longitudinal data, we could focus on leveraging this 

information to boost the performance of segmentation. 

 

 

 

 
 

Table A.1: This table shows the implementation of first experiment in Section 

4.2. In this experiment, we evaluated our model using the ISBI dataset with 

available ground truth (training set with 5 subjects). We implemented a nested 

leave-one-subject-out cross-validation (3 subjects for training, 1 subject for val- 

idation, and 1 subject for testing). The numbers indicate the subject identifier. 
    Training Validation Testing 

1,2,3  4 5 

1,2,4 3 5 

1,3,4 2 5 

      2,3,4 1 5  
1,2,3 5 4 

1,2,5 3 4 

1,3,5 2 4 

      2,3,5 1 4  

1,2,4 5 3 

1,2,5 4 3 

1,4,5 2 3 

      2,4,5 1 3  

1,3,4 5 2 

1,3,5 4 2 

1,4,5 3 2 

      3,4,5 1 2  

2,3,4 5 1 

2,3,5 4 1 

2,4,5 3 1 

      3,4,5 2 1  
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Table A.2: This table shows the implementation of the second experiment in 

Section 4.2. In this experiment, our model was evaluated using official ISBI test 
set including 14 subjects without publicly available ground truth. We trained 

our model doing a leave-one-subject-out cross-validation on whole training set 

(4 subject for training, 1 subject for validation, and 14 subject for testing). The 

numbers indicate the subject identifier.  
    Training Validation  Testing  

1,2,3,4  5 ISBI test set 

1,2,3,5 4 ISBI test set 

1,2,4,5 3 ISBI test set 

1,3,4,5 2 ISBI test set 

     2,3,4,5 1 ISBI test set  

 

 
Table A.3: This table gives detailed information regarding the training proce- 

dure for the first experiment in Section 4.3. In this experiment, we implemented 

a nested 4-fold cross-validation over the whole NRU dataset including 37 sub- 

jects. [A-B @ C-D] denotes subjects A to B and C to D. 
 

Training Validation Testing 

[17-37] [10-16] [1-9] 

[10-16 @ 24-37] [17-23] [1-9] 

[10-23 @ 31-37] [24-30] [1-9] 

[10-30 @ 31-37] [31-37] [1-9] 
 

[8-9 @ 19-37] [1-7] [10-18] 

[1-7 @ 24-37] [8-9 @ 19-23] [10-18] 

[1-9 @ 19-23 @ 31-37] [24-30] [10-18] 

[1-9 @ 19-30] [31-37] [10-18] 
 

[8-18 @ 28-37] [1-7] [19-27] 

[1-7 @ 15-18 @ 27-37] [8-14] [19-27] 

[1-14 @ 31-37] [15-18 @ 28-30] [19-27] 

[1-18 @ 28-30] [31-37] [19-27] 
 

[8-37] [1-7] [28-37] 

[1-7 @ 15-27] [8-14] [28-37] 

[1-14 @ 22-27] [15-21] [28-37] 

[1-21] [22-27] [28-37] 
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Appendix A. Evaluation Protocols 

This appendix includes 3 tables that describe the training pro- 

cedures in details related to Sections 4.2 and 4.3. 

Table A.1 and Table A.2 give detailed information about 

how we implemented training procedure on the ISBI dataset for 
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the first and second experiments.  Table A.3 describes the first828 

and second experiments. Table A.3 describes the nested 4-fold829
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cross-validation training procedure applied on the NRU dataset 
in the first experiment. 
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In  order  to  aggregate  the  outcomes  of  ensembles  of  label-837 

ing, beyond majority voting, we tested alternative well known838 
839 

matic fetal ultrasound standard plane detection using knowledge transferred 

recurrent neural networks. In: International Conference on Medical Image 

Computing and Computer-Assisted Intervention. Springer, pp. 507–514. 
779 label fusion methods.   Specifically, we repeated the first ex-  
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periment on NRU dataset as described in Section 4.2 substitut-841 

ing the majority vote framework with averaging and STAPLE842 

(Simultaneous Truth and Performance Level) (Warfield et al.,843 
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works for accurate gland segmentation. In: Proceedings of the IEEE confer- 

ence on Computer Vision and Pattern Recognition. pp. 2487–2496. 
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the three plane orientations and the output volumes of the dif-846 

ferent models during cross-validation.  Table B.1 indicates the847 

performance of each method. Overall, majority voting had bet-848
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ter performance than other methods.   Therefore, we selected 
this method for all experiments. 
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M., Ilg, R., Schmid, V. J., Zimmer, C., et al., 2012. An automated tool for de- 

tection of flair-hyperintense white-matter lesions in multiple sclerosis. Neu- 

roimage 59 (4), 3774–3783. 

Shiee, N., Bazin, P.-L., Ozturk, A., Reich, D. S., Calabresi, P. A., Pham, D. L., 

2010. A topology-preserving approach to the segmentation of brain images 

with multiple sclerosis lesions. NeuroImage 49 (2), 1524–1535. 

Simon, J., Li, D., Traboulsee, A., Coyle, P., Arnold, D., Barkhof, F., Frank, J., 

Grossman, R., Paty, D., Radue, E., et al., 2006. Standardized mr imaging 

protocol for multiple sclerosis: Consortium of ms centers consensus guide- 

lines. American Journal of Neuroradiology 27 (2), 455–461. 

Sled, J. G., Zijdenbos, A. P., Evans, A. C., 1998. A nonparametric method for 

automatic correction of intensity nonuniformity in mri data. IEEE transac- 

tions on medical imaging 17 (1), 87–97. 

Warfield, S. K., Zou, K. H., Wells, W. M., 2004. Simultaneous truth and per- 

formance level estimation (staple): an algorithm for the validation of image 

segmentation. IEEE transactions on medical imaging 23 (7), 903–921. 

http://arxiv.org/abs/1412.6980

