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Abstract

Multiple sclerosis (MS) is a neurological condition characterized by severe structural

brain damage and by functional reorganization of the main brain networks that try to

limit the clinical consequences of structural burden. Resting-state (RS) functional con-

nectivity (FC) abnormalities found in this condition were shown to be variable across

different MS phases, according to the severity of clinical manifestations. The article

describes a system exploiting machine learning on RS FC matrices to discriminate dif-

ferent MS phenotypes and to identify relevant functional connections for MS stage

characterization. To this end, the system exploits some mathematical properties of

covariance-based RS FC representation, which can be described by a Riemannian

manifold. The classification performance of the proposed framework was significantly

above the chance level for all MS phenotypes. Moreover, the proposed system was

successful in identifying relevant RS FC alterations contributing to an accurate phe-

notype classification.
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1 | INTRODUCTION

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and

neurodegenerative disease of the central nervous system (CNS) which

is characterized by nonuniform clinical manifestations and a variable

progression. Clinical impairment is consequent to the accumulation of

structural damage in the white and gray matter (GM) of the CNS

(Filippi et al., 2018). Functional magnetic resonance imaging (fMRI)

techniques hold great promise for the study of patients with MS, to

improve our understanding of functional brain response to the pro-

gressive accumulation of disease-related injury. In the last two

decades, the advent of resting state (RS) fMRI enabled the investiga-

tion of functional connectivity (FC) abnormalities also in severely dis-

abled patients. RS fMRI studies of MS patients often showed trends

towards higher RS FC at the earliest disease stages (Roosendaal

et al., 2010), followed by a gradual RS FC reduction in progressive MS

(PMS) phenotypes (Rocca et al., 2010; Rocca et al., 2018). However,

complex patterns of regional increased/decreased RS FC in critical

brain networks/regions were detected across different phenotypes

(Rocca et al., 2018; Schoonheim et al., 2015).

Among the most advanced approaches introduced with the aim

to analyze RS fMRI data, network-based analysis has recently received

great attention. Brain network analysis is based on a mathematical

framework that allows describing the brain as a graph. A graph con-

sists of a collection of nodes (i.e., brain regions) and edges

(i.e., functional connections, which are generally assessed using

covariance or correlation measures) (Guye et al., 2010). Graph theo-

retical studies showed altered functional network properties in MS

patients compared to healthy controls (HC), and reorganization of

functional hubs which contributed to explaining phenotypic variability

of MS patients and the presence of cognitive impairment (Guye

et al., 2010; Liu et al., 2017; Rocca et al., 2016).

Within the graph theoretical framework, the RS FC of each sub-

ject is described as a covariance matrix defining the functional associ-

ation between pairs of brain regions. Past works tried to directly

utilize such matrices as inputs for a classifier (Crimi et al., 2019; Gao

et al., 2012; Satterthwaite et al., 2013); however, these approaches

failed to fully exploit the available information. Covariance matrices

are, in fact, symmetric positive definite (SPD). As such, the space of

these matrices forms a Riemannian manifold. In such a space, the

Euclidean distance between these matrices is a suboptimal descriptor,

as it fails to take into account the manifold curvature. Here, the sepa-

ration between covariance matrices is expressed as the Log-Euclidean

distance, which is a proper geodesic metric on a Riemannian manifold

and takes into account the geometrical properties of SPD matrices

(Wong et al., 2018; Yamin et al., 2019a).

Several works adopted Riemannian geometry to investigate fMRI

data, generally with classification purposes: in Varoquaux et al. (2010)

for instance, analysis of covariance matrices was used to discriminate

between post-stroke and healthy subjects; in Zhao et al. (2018), a

technique was proposed for the characterization of Riemannian tra-

jectories in longitudinal studies. Still, in longitudinal studies, in Ng

et al. (2014), transportation on the manifold of covariance matrices

were employed to evaluate changes in FC following a particular task,

while Qiu et al. (2015) adopted a combination of locally linear embed-

ding and Log-Euclidean Riemannian metric for dimensionality reduc-

tion of functional brain networks. In Dodero, Minh, et al. (2015),

Gaussian kernels based on Log-Euclidean and Stein divergence met-

rics on Riemannian manifolds have been used to classify study sub-

jects in healthy controls and in people with pathological disorders. In

Dodero, Sambataro, et al. (2015), Grassmannian geometry on graph

Laplacians has been used to highlight subnetworks that, in turn, allow

FC to be used for classification purposes.

Recently, machine learning approaches have been proposed to

differentiate MS patients from other diseases and HC, as well as to

distinguish between MS subgroups using structural connectivity

(Bendfeldt et al., 2012; Eshaghi et al., 2016; Kocevar et al., 2016;

Muthuraman et al., 2016; Stamile et al., 2015). In Zurita et al. (2018), a

multimodal (structural and functional connectivity) approach using an

SVM classifier has been proposed to classify relapsing–remitting

(RR) MS patients from HC and in Saccà et al. (2019), multiple classi-

fiers have been deployed in order to perform the classification

between MS patients from control subjects. Both models used feature

selection methods in order to explore the important networks

involved in the considered pathology. Few approaches (Fiorini

et al., 2015; Kocevar et al., 2016; Taschler et al., 2014) have been pro-

posed to separate MS patients by phenotype using structural and clin-

ical data. Usually, the covariance-based RS FC data is very high

dimensional and indeed very complicated to be analyzed. So the mini-

mization of this so-called curse of dimensionality is very crucial for

classification tasks, but it could also lead to the risk of overfitting and

misclassification (Guyon et al., 2002).

In this work, we propose a novel two-step framework exploiting a

proper design of RS FC matrices to encode the high-dimensional con-

nectivity data into a low-dimensional representation. Such encoding

can be utilized to train a classification model to distinguish between

different MS phenotypes and HC, which ultimately can lead to the

identification of RS FC connections characterizing disease groups.

Classification between subjects is not the main objective of this work;

instead, the idea is to use the classification framework to identify the

encoded features that better separate the groups. This information

can then be used to identify the discriminative brain functional con-

nections. As a first step towards classification, we used an unsuper-

vised clustering approach where participating subjects were clustered

into a limited number of groups with similar.

RS FC covariance matrices to reduce the impact of individual vari-

ability on MS phenotype characterization. Dominant set clustering

was adopted, as it does not require the definition of the number of

clusters, which is unknown a priori in this case. The only required

information for clustering is the similarity matrix between subjects,

easily defined once the Riemannian distances have been computed.

Once clusters have been assigned, we used the centroids of each

cluster as reference points to encode RS FC and build a low-

dimensional representation: RS FC of each subject, at this stage, is

described by the distance from each centroid. This representation is

much smaller (typically between 5 and 7 elements) than the
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covariance matrix itself, which is defined by several thousand values.

The resulting low-dimensional representation was then fed to a linear

support vector machine (SVM) which provides the actual classifica-

tion. Finally, a sensitivity analysis was carried out on the trained classi-

fier in order to extract RS FC connections most likely to be affected

and provide the definition of possible markers to monitor MS

condition.

2 | MATERIAL AND METHODS

2.1 | Dataset acquisition and RS fMRI
preprocessing

Subjects were enrolled in this prospective study at the Neuroimaging

Research Unit (IRCCS San Raffaele Scientific Institute, Milan, Italy).

Approval was received from the local ethical committee (IRCCS San

Raffaele Scientific Institute, Milan, Italy; protocol ID FISM2013/S/1).

All subjects gave written informed consent prior to study participa-

tion. To be included, subjects had to satisfy the following criteria:

(1) right-handedness; (2) have no other major systemic, psychiatric, or

neurological disorders; (3) no history of drug/alcohol abuse; (4) for

patients, to be relapse- and steroid-free for at least 3 months before

MRI, and have a stable disease-modifying treatment during the past

6 months. Within 48 h from MRI acquisition, MS patients underwent

a complete neurological evaluation, with a rating of clinical disability

using the Expanded Disability Status Scale (EDSS) score

(Kurtzke, 1983).

MRI scans were collected from all study subjects using a 3.0T Phi-

lips Intera scanner (Philips Medical Systems, Eindhoven, The

Netherlands) and included the following MRI sequences: (a) T2*-

weighted single-shot echo-planar imaging (EPI) sequence for RS fMRI

(repetition time [TR] = 3000 ms/echo time [TE] = 35 ms, field-of-

view = 240 mm2, matrix = 128 � 128, slice thickness = 4 mm,

200 sets of 40 contiguous axial slices); (b) dual echo turbo spin echo

(TR/TE = 2599/16–80 ms; field-of-view = 240 � 240 mm2;

matrix = 256 � 256; echo train length [ETL] = 6; 44 contiguous,

3-mm-thick axial slices); and (c) 3D T1-weighted turbo field echo

(TR/TE = 7/3.2 ms, inversion time [TI] = 900 ms, field-of-

view = 256 � 240 mm2, matrix = 256 � 240, slice thickness = 1 mm,

192 sagittal slices).

T2 lesion volumes were measured on dual-echo scans using a

local thresholding segmentation technique (Jim 7.0, Xinapse Systems

Ltd., Colchester, UK). RS fMRI standard preprocessing, including

motion correction and registration to MNI space, was performed using

fMRIPrep (Esteban et al., 2019) and selecting the nonaggressive inde-

pendent component analysis (ICA)-based Automatic Removal Of

Motion Artifacts (AROMA) denoising output (Pruim et al., 2015). 3D

T1-weighted scans were lesion-filled and processed using FSL FAST

(Zhang et al., 2001) for tissue segmentation. The gray matter

(GM) tissue mask was matched with a subset of regions of interest

(ROIs) derived from the AAL atlas (n = 86 regions considering cere-

brum only, and excluding bilateral putamen and insula for

misregistration issues) and applied to the processed RS fMRI scan of

each subject to extract the mean time-series signal of all ROIs. The

86 � 86 RS FC matrices Σi were computed for each subject using the

covariance between time series, describing in this way the brain con-

nectivity in terms of both signal co-activation between ROIs and its

amplitude.

2.2 | The Riemannian manifold of SPD matrices

Let S = {Σ1, …, ΣK} denote the set of covariance matrices representing

the brain RS FC of all subjects. Covariance matrices are always guar-

anteed to be symmetric positive semi-definite, however, in a real sce-

nario they are frequently also SPD, that is, for each matrix Σi of size

n � n it holds that xTΣix > 0, 8 x /= 0 � Rn. Eventually, a small regulari-

zation to the main diagonal (Σi = Σi + λI, with λ very small,

e.g., λ = 10�5) is sufficient to turn all semi-definite covariance matri-

ces into SPDs. An important property of SPD matrices is that they

always form a Riemannian manifold, which is a richer descriptor as

compared to vectorial space (Pennec et al., 2006) and it allows the

analysis of connectivity matrices in the manifold space (Dodero, Ha

Quang, et al., 2015; Yamin et al., 2019a). Indeed, a metric based on

the Euclidean distance is suboptimal when applied to SPD matrices

(Tuzel et al., 2008) because it is not responsive to the geometry of

manifold (Yamin et al., 2020). So, to fully exploit the advantage of the

manifold geometrical structure, it is recommended to consider the

notion of geodesic distance, which measures the length of the short-

est curve on the manifold connecting two points (two matrices) and

allows a better description of such data (Yamin et al., 2019b; Yamin

et al., 2019c). Figure 1 illustrates the conceptual difference between

Euclidean distance and geodesic distance on a manifold space.

Among the available geodesic metrics on the Riemannian mani-

fold (Dodero, Ha Quang, et al., 2015; Dodero, Sambataro,

F IGURE 1 The demonstration of conceptual difference of
Euclidean distance (red dashed line) and geodesic distance (black
dashed line) between different point L (in orange) on a manifold
M structure.
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et al., 2015), we used the Log-Euclidean (Log-E) distance which is sim-

ple and fast to compute. Given two SPD matrices Σi and Σj, the Log-E

distance can be computed as:

dL Σi,Σj

� �¼k log Σið Þ� log Σj

� � k F : ð1Þ

and the average of a set of SPD matrices is defined in a closed form

(Dryden et al., 2009) as:

ΣL ¼ exp arg inf
Σ
PK

¼1

jlog Σið Þ� log Σð Þj2
8
<

:

9
=

;
¼ exp

1
n

XK

i¼1
log Σið Þ

� �
ð2Þ

2.3 | Encoding of FC matrices

In principle, RS FC alterations due to MS pathology might be helpful

for classification between HC and MS patients. These alterations are

concealed behind the intrinsic high variability between subjects which

makes this problem hard to solve. So, the underlying hypothesis of

this work is to reduce this high variability by assembling all the sub-

jects into homogeneous groups and computing a unique representa-

tive connectome for each group. Hence, the problem can be

considered as a clustering task on the RS FC matrices and the result-

ing centroids of each cluster become reference networks, represent-

ing groups of people with similar conditions.

The group of these reference networks represents therefore a

dictionary that can be used to compress the high-dimensional connec-

tivity patterns into a vectorial descriptor retaining the difference

between groups while filtering the intrinsic variability of subjects in

the same group. More specifically, the RS FC matrix of each subject

can be represented by the set of distances from all cluster centroids.

2.4 | Patients classification and sensitivity analysis

With such vectorial representation of RS FC matrices, any classifier

can be employed for classification. In particular, in all our experiments,

we have used a linear SVM and logistic regression (LR) with LASSO

regularization for comparison and analysis of features. We selected

these two algorithms because they allow a simplified sensitivity analy-

sis for further identification of relevant abnormal RS FC connections.

In this way, the relative weights associated with each feature can be

analyzed for their importance in characterizing and distinguishing

between groups. In LR, we are using an L1 regularization, which

induces a shrinking of weights associated with irrelevant features.

Hence, high values are associated only with features that are impor-

tant for classification. This approach is similar to Leonardi et al.

(2013), where PCA was adopted to determine the representative

brain networks.

Our approach is based on the speculation that being a complex

data structure, RS FC matrices cannot be fully characterized using

Euclidean metrics and can be better expressed by a geodesic distance

on the manifold of RS FC matrices. Moreover, grouping the subjects

according to their network similarity and then describing the data in

terms of groups' representatives should help to minimize the noise

and the great variability intrinsic to the data.

Next, we searched for alterations in brain connectivity that had

the most discriminative power when comparing different groups of

subjects. To this aim, we trained linear classifiers (SVM and LASSO

regularized LR) on the vectorized representation of RS FC matrices of

all subjects and performed a sensitivity analysis to identify the most

relevant features determined by each trained classifier. The choice of

the models is due to the simplicity of the sensitivity analysis, which

can be carried out simply by looking at the feature weights. For each

selected feature we found the threshold best separating the two ana-

lyzed classes. The difference between the geodesic means of the two

groups was then used to identify the significant changes in the RS FC

of the two classes.

2.5 | Geodesic dominant set clustering

We have employed Dominant Set (DS) clustering algorithm (Pavan &

Pelillo, 2006), which has two main advantages: it is easily adaptable to

any metric, and it automatically determines the number of clusters.

Another captivating property of DS clustering is that it does not only

consider the samples in isolation with respect to a reference, but it

also exploits the relations with all other samples. This property gener-

ates clusters more robust-to-noise, which are completely explicit to

the initialization (contrary to k-Means). Furthermore, so far DS clus-

tering algorithm has been successfully applied in other partially related

contexts (Dodero, Vascon, et al., 2015; Hou et al., 2016; Vascon

et al., 2013).

The Dominant Set (DS) clustering algorithm (Pavan &

Pelillo, 2006) is based on a graph theoretic concept that generalizes

the maximal clique problem to weighted graphs and due to this, it iter-

atively computes coherent, well-separated, and compact subsets of

nodes (the dominant sets) from a graph. This approach relies on an

optimization algorithm to extract all clusters one by one, as needed. In

DS, the dataset to be clustered is represented by a weighted undi-

rected graph G = (V, E, w), where V = {1, …, n} is the set of vertices

representing the data points, the edges E ⊆ V � V represent the rela-

tionships between the data points, and w: E ! R+* are the edge

weights which reflect the similarity between the linked vertices.

Indeed, DS clustering operates on a similarity matrix which can be

computed as:

S i, jð Þ¼1� dL i, jð Þ
max dLð Þ ð3Þ

The similarity matrix S is a n � n non-negative, symmetric matrix,

where dL is defined in Equation (1) and max(dL) is the maximum pair-

wise geodesic distance in the entire graph. In particular, an internal

similarity-based nonparametric internal coherency criterion is

deployed in a dominant set which analyzes the data to be included in

the dominant set. The procedures of extraction of DS can be

YAMIN ET AL. 2297
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considered as the process of maximizing the size of DS while preserv-

ing internal coherence. This is obtained by optimizing the so-called

cohesiveness, a quadratic function considering the similarity matrix of

the graph, and the cluster assignment of all modes. Such measures

enable the data within a DS to be highly similar to each other and less

similar to the data outside the DS. This allows to enable DS to formal-

ize two important properties of all clustering methods: the intracluster

homogeneity and intercluster inhomogeneity and thus a DS can be

regarded as a cluster.

The cohesiveness optimization is performed through a dynamical

system which is an important result from evolutionary game theory

(Weibull, 1997) and is known as replicator dynamics (RD) (Bulò

et al., 2011). The data to be clustered is represented in the form of a

similarity matrix S. DS algorithm is nonparametric and it extracts the

clusters in a sequential manner determining the number of clusters

automatically. As a consequence of its ability to preserve internal

coherence, the algorithm has a further advantage, it prevents the out-

liers to be grouped into any cluster.

3 | EXPERIMENTS

We applied our proposed algorithm to classify between HC and MS

patients with different disease phenotypes according to the following

scheme: HC vs. RRMS, HC vs. PMS, and RRMS vs. PMS patients. For

these analyses, DS clustering resulted in different numbers of clusters

ranging between 5 and 7. The working hypothesis is that RS FC matri-

ces can be partitioned into homogeneous subgroups preserving the

alterations in brain connectivity that characterize the original MS

groups. So, a clustering of RS FC matrices was the first step in the pro-

posed pipeline. In particular, we used DS clustering with geodesic dis-

tance. To achieve the double goal of both classifying HC vs. MS

phenotypes and identifying discriminative abnormal connections, we

designed the experiments as a composition of two processes.

3.1 | Classification

For classification purposes, we deployed a 5-fold cross-validation

(CV) setup with the constraint of preserving the proportion between

classes (Stone, 1974). In each iteration of CV, we used DS clustering

on the training data and computed the centroid for each cluster. Then,

we computed the geodesic distances of each training and testing sam-

ple from these centroids, representing all matrices as vectors of dis-

tances (features). We used these distance vectors to train and test a

linear SVM. The number of features depends on the number of clus-

ters extracted automatically by DS (usually 5 to 7 clusters). Figure 2

shows a schematic overview of the classification pipeline.

In these experiments, all distances were computed using Log-

Euclidean distance (Equation 1) and the corresponding geodesic mean

(Equation 2). For statistical purposes, this process was repeated

100 times and the resulting evaluation was computed as the average

over these iterations. To check the significance level of classification

results we also performed a permutation test on labels: a null distribu-

tion was generated by randomly permuting the labels 1000 times and

for each iteration, we performed the same Linear SVM classification

using the 5-folds CV approach. The resulting distribution was used to

identify significance levels.

3.2 | Identification of relevant RS FC abnormalities

This part of the analysis aims at identifying brain regions having the

most discriminative power when comparing different groups of

F IGURE 2 The classification framework, includes (a) input data in the form of covariance-based RS FC matrices. (b) Splitting the data into test
and train samples using 5-fold cross-validation. (c) Performing dominant-set clustering on training samples and computing the centroid of each
cluster using the geodesic mean formula. (d) Computing the geodesic distance of each training sample from each centroid and using this distance
vector to train our classifier. (e) Computing the geodesic distance of each testing sample from each centroid obtained from training samples and
using this distance vector to test the trained classifier. (f) A classification model (a linear-SVM) was used to classify MS patient phenotypes from
HC and each other.
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subjects. To this aim, as a first step, we used the entire dataset to

compute the group representatives (cluster centroids determined by

DS clustering) and then we vectorized the network representations

for all subjects using the set of their distances from these representa-

tives. Then in a 5-fold CV setup, we trained a linear classifier and per-

formed a sensitivity analysis to identify the most relevant features

determined by each trained classifier. For comparison purposes, we

tested two models, the linear-SVM and the LASSO regularized logistic

regression (LR). Notice that for both models the sensitivity analysis is

simply carried out by looking at the feature weights.

We then made a statistical investigation repeating 100 times

the CV set up to identify the relevant features as statistics of the

ensemble of trained models. To select the set of significant features

we used a permutation test on feature values (by randomly shuf-

fling features value for each subject) and selected only those fea-

tures with a weight value higher than the 95th percentile of

permutation test values. Selected features actually represent con-

nections having the most discriminative contribution to

classification.

For each selected feature, we determined the threshold best sep-

arating the two groups of subjects. We then used the subset of sub-

jects correctly separated by this univariate criterion to compute for

each group the mean RS FC matrix using Equation (2), which actually

represents the reference connectome of that group for that particular

selected feature. By computing the difference of these reference con-

nectomes for the two groups, we can actually identify the set of rele-

vant connections which show the change of RS FC between the two

groups. The flow diagram of the proposed sensitivity analysis pipeline

is illustrated in Figure 3.

4 | RESULTS

Forty-three HC and 113 MS were screened for inclusion. After the

exclusion of 6 HC and 13 MS patients for inadequate MR scan quality

(n = 7 subjects), excessive head movements (n = 9), and bad registra-

tion output (n = 3), the final study cohort consisted of 37 HC and

100 MS patients. Demographic and clinical information of study sub-

jects is reported in Table 1. There were 49 RRMS, 30 secondary pro-

gressive (SP) MS, and 21 primary progressive (PP) MS patients,

defined according to Lublin et al. (2014). In order to increase the sam-

ple size and robustness of classification analysis, SPMS and PPMS

patients were grouped together into a progressive MS (PMS) group.

The mean T2 lesion volume in the entire patient group was 10.3 ml

(interquartile range = 3.1–12.7 ml). T2 lesion volume was significantly

higher (p = .03) in PMS (mean = 14.0 ml, interquartile range = 3.5–

22.5 ml) than in RRMS patients (mean = 7.4 ml, interquartile

range = 2.9–9.2 ml).

4.1 | Classification results

Figure 4 shows the boxplots for the comparison of classification accu-

racy achieved over 100 iterations of the 5-fold CV with full RS FC

matrices. The bars represent the results for HC vs. RRMS patients, HC

vs. PMS patients, and RRMS vs. PMS patients with two different clas-

sifiers (SVM in yellow and LR in green). In Figure 4, it can be seen that

the achieved classification accuracy for HC vs. RRMS patients was

equal to 72.51% with SVM and 70.54% with LR, for HC vs. PMS

patients the average accuracy achieved was 85.19% with SVM and

F IGURE 3 The schematic diagram of the sensitivity analysis pipeline designed to identify prominent changes in brain RS FC of MS patient
phenotypes. The input data (a) in the form of covariance-based RS FC matrices is clustered with dominant-set algorithm (b) using all matrices
(without any cross-validation framework). The resulting cluster representatives (geodesic centroids) were used to extract the features in the form
of geodesic distances from the centroids. Then a bootstrapping mechanism was used to train multiple classifiers allowing us to analyze the
weights' statistics associated with each feature. (c) Then a permutation test was used to select the set of significant features, which were then
used to identify and select (d) the samples correctly separated into groups. (e) In the end, the geodesic means matrices of each group were
computed and prominent connections were highlighted by simply subtracting these geodesic mean matrices (reference connectomes) from each
other.
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84.80% with LR and for RRMS vs. PMS patients, the achieved accu-

racy was 76.04% with SVM and 71.31% with LR. It can be perceived

that accuracy with SVM was slightly better as compared to LR.

Table 2 shows the average classification performance in term of

precision, recall and F1 scores for the experiments done with the

SVM classifier, as the accuracy with SVM is slightly better as com-

pared to LR. To check the statistical significance of our results

achieved with the geodesic DS clustering method, we performed a

permutation test on the labels. Permutation results are summarized in

form of p values, which show the ratio of a total number of accuracy

values greater than the accuracy value with the true label divided by

the total number of permutations (1000 in our case). For HC

vs. RRMS classification, p value is .014 and for HC vs. PMS classifica-

tion p value is <.005.

4.2 | Sensitivity analysis

In order to identify RS FC connections relevant to group classification,

we performed a sensitivity analysis on the trained classifiers. As

explained in Section 3.2, for the given classifiers, it consists of the

selection of the largest weights. As a general criterion, we performed

a permutation test in order to determine a significance threshold

allowing us to select the most significant weights. The boxplot in

Figure 5 shows the distributions of weights of trained SVMs (yellow)

and LR (green) classifiers over 100 iterations. The results are shown

for all three tasks, that is, HC vs. RRMS patients, HC vs. PMS patients,

and RRMS vs. PMS patients. Gray and orange horizontal lines show

the maximum and minimum values of the significance threshold

obtained with the permutation test for SVM and LR classifiers

respectively.

It can be noticed that for all tasks the weights of the trained clas-

sifiers look quite stable, that is, there is a low variance across experi-

ments. As described earlier in Section 2.4, due to L1 regularization, LR

shrinks the weight associated with irrelevant features and assigns high

values to the features which are important for classification. This thing

also enables the LR classifier to have low variance across feature

weights as compared to SVM and hence leads towards a more stable

selection of features. So for feature selection, we considered weights

obtained with LR analysis instead of SVM even if it has better perfor-

mance because LR is more robust for stable feature selection.

So, for RS FC abnormalities identification, for HC vs. RRMS

patients, HC vs. PMS patients, and RRMS vs. PMS patients classifica-

tion, we selected clusters number 1, 2, and 4 respectively. Figure 6

illustrates the distribution of subjects around the selected feature. As

described in Section 3.2, after finding the threshold over the selected

feature optimally separating the two classes, we computed a refer-

ence connectome for each class as the mean of well-separated sam-

ples. We then computed the difference between reference

connectomes of HC and MS phenotypes to highlight the connections

mainly responsible for discrimination between the two groups.

TABLE 1 Demographic and clinical features of healthy controls (HC) and patients with multiple sclerosis (MS). Patients are first considered as
a whole and then divided into relapsing–remitting (RR) and progressive MS, as implemented in the classification analysis

HC MS patients p RRMS patients Progressive MS patients p

Subjects 37 100 - 49 51 -

Female/male [n] 19/18 38/62 .17b 31/18 31/20 .36b

Age, mean (IQR) 36.2 47.4 <.001a 42.6 52.8 <.001c

[years] (25–49) (39–58) (35.6–49.7) (46.5–59.7)

EDSS score, median - 4.5 - 2.0 6.0 <.001d

(IQR) (2.0–6.0) (1.5–4.0) (5.5–7.0)

Disease duration, - 14.9 - 10.9 19.0 <.001a

mean (IQR) [years] (3.5–20) (5.8–16.3) (12.3–25.2)

Abbreviations: EDSS, expanded disability status scale; IQR, interquartile range.
aTwo sample t-test.
bChi-square test.
cANOVA model, post hoc comparison between RRMS and PMS patients.
dMann–Whitney U test.

F IGURE 4 Boxplots represent the statistics over 100 repetitions
of cross-fold validation accuracy with SVM (yellow) and logistic
regression (green), for the classification tasks HC vs. RRMS patients,
HC vs. PMS patients, and RRMS vs. PMS patients. The symbol “x”
shows the mean accuracy

TABLE 2 Average classification performance obtained with SVM
classifier

Group of subjects Accuracy Precision Recall F1 score

HC vs. RRMS 72.51% 72.85% 66.50% 69.40%

HC vs. PMS 85.19% 87.11% 88.38% 87.21%

RRMS vs. PMS 76.04% 77.85% 77.83% 74.65%
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Figures 7–9 show the results obtained from the abnormalities

identification analysis of HC vs. RRMS patients, HC vs. PMS patients

and RRMS vs. PMS patients, respectively. The first two columns of

1st row of the figure show the reference connectome of each group

along with the identification of subnetworks. The last column shows

the alteration of significant connections obtained by subtracting the

second reference connectome from the first one. In the bottom row,

we used a connectogram to illustrate the alterations between FC dif-

ferences within subnetworks and between subnetworks. Regions with

blue color represent a decreased RS FC in the connectome of the sec-

ond group, whereas the red color represents an increased RS FC in

the second group.

As shown in Figures 7 and 8, RRMS and PMS patients were

mainly characterized by increased RS FC in the basal ganglia subnet-

work (especially between the bilateral thalami) vs. HC, as well as by

decreased RS FC within the temporal and frontal subnetworks. In

these networks, RS FC decrease mainly involved the fusiform gyrus

for the temporal network and the medial frontal cortex for the frontal

network, respectively. Conversely, an increased RS FC between the

bilateral paracentral lobule and other regions of the frontal subnet-

work was detected. Finally, both RRMS and PMS patients showed

decreased RS FC within the occipital subnetwork vs. HC.

When looking at the comparison between PMS patients and HC,

as highlighted in Figure 8, the increased RS FC in the basal ganglia

subnetwork was more extensive than that in RRMS vs. HC and

involved also the bilateral caudate nuclei. Moreover, in the parietal

subnetwork, decreased RS FC among the posterior cingulate cortex,

angular gyrus, and precuneus was detected. In this subnetwork, evi-

dence of increased RS FC between the superior parietal lobule and

other parietal regions was also found.

The direct comparison of PMS vs. RRMS patients showed, as

highlighted in Figure 9, a stronger decrease of RS FC within occipital

and temporal subnetworks in PMS vs. RRMS patients, and a higher RS

FC between the posterior cingulate cortex and precuneus.

F IGURE 5 Results of sensitivity analysis for weights of SVM
classifier (in yellow) and logistic regression classifier (in green) for each
combination of experiments (a) HC vs. RRMS patients, (b) HC vs. PMS
patients and (c) RRMS vs. PMS patients. Gray lines represent the
maximum and minimum value of the threshold obtained with the
permutation of features values for the SVM classifier and the orange
line show the threshold values for the logistic regression classifier.

F IGURE 6 Distribution of all subjects around the selected
centroid for selected cluster 1 of HC vs. RRMS (top), cluster 2 of HC
vs. PMS (middle), and cluster 4 of RRMS vs. PMS (bottom). The Blue
and orange color shows the subjects of two groups distributed around
the centroid of the selected cluster in terms of their geodesic distance
(log-E). The red dotted line shows the calculated threshold to separate
the two groups
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Interestingly, as shown in Figure 7, RS FC among subnetworks was

markedly increased in RRMS patients vs. HC, while between-network

RS FC increase was not so evident in PMS patients vs. HC (Figure 8).

This was reflected by a decreased RS FC between parietal, occipital,

temporal, and frontal networks in PMS vs. RRMS (Figure 8).

5 | DISCUSSION

Analysis of RS FC reorganization in MS patients according to disease

stage is a complex task, due to different plasticity mechanisms occur-

ring in the main functional networks of the brain. According to disease

phenotype, RS FC might be increased or decreased, with adaptive and

maladaptive phenomena occurring with variable extents in different

patients' groups (Rocca et al., 2018). This makes a classification task

based on RS FC a challenging problem.

This study illustrates that a geodesic clustering-based encoding of

RS FC matrices allowed a reliable differentiation of MS phenotypes

from HC, and made it possible to identify relevant RS FC

abnormalities most contributing to the classification. The classification

results presented in Figure 4 vindicate the hypothesis that it is possi-

ble to cope with the great physiological variability across subjects

grouping them by similarity, and using groups references to encode

the data. These results also demonstrate that RS FC variability affect-

ing brain networks can be presumably and effectively measured using

the RS fMRI as an eminent feature of MS brain pathology and further-

more can be used to classify between healthy subjects and different

phenotypes of MS.

The indexes used to evaluate the classification performance (see

Table 2 and Figure 4) are significantly above the chance level for each

tested task. These results strongly support the hypothesis that RS FC

abnormalities can be utilized to discriminate between HC and MS

phenotypes, especially when using an appropriate encoding technique

which follows the manifold nature of SPD matrices. Moreover, the

resulting set of clusters identifying the features was always few

(between 5 and 7). This makes more robust the sensitivity analysis of

feature weights after training, in order to identify the centroids

responsible for the discrimination between the classes, which in turn

F IGURE 7 This figure illustrates the identification of RS FC abnormalities between HC and RRMS patients. Top row: The first two columns
show the covariance-based reference connectomes of each group, along with the division of the full RS FC matrix into subnetworks. The last
column shows the difference between reference connectomes, with significantly changing connections in terms of the difference between
covariance (blue: decreased RS FC, red: increased RS FC in the second group compared to the first one). Bottom row: connectograms represent
between-group RS FC differences within subnetworks (left) and between subnetworks (right)
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helps us to identify relevant RS FC changes (see Figures 7–9). One

limitation of this study is the small sample size. To handle this issue,

we have used the nested K-fold cross-validation setup which provides

considerably unbiased performance estimates (Varma & Simon, 2006).

Moreover, we have used linear SVMs and LASSO regularized LR,

which are good with small sample set.

From a clinical point of view, we found that several functional

connections in different brain lobes were clinically eloquent. Specifi-

cally, we found that increased RS FC within the subcortical network,

especially involving the bilateral thalamus, and decreased FC within

the temporal, parietal, and occipital subnetworks were contributing to

both HC-RRMS and HC-PMS classification. The thalamus is a key

deep GM structure involved in sensory, motor, and cognitive proces-

sing. These results support the notion that thalamic RS FC abnormali-

ties occur in all disease phenotypes and might be a hallmark of MS

disease (Minagar et al., 2013). This finding also confirms data from

previous studies showing that abnormally high RS FC in subcortical

regions, especially in the thalamus, is frequent in this condition

(Hidalgo de la Cruz et al., 2021; Schoonheim et al., 2015).

The other subnetworks showing extensive RS FC abnormalities in

both RRMS and PMS patients were the temporal, occipital and parie-

tal networks.

This latter network was showing a peculiar involvement of the

posterior cingulate cortex, angular gyrus, and precuneus. Such regions

are well-known to be part of the default-mode network, which is one

of the key networks of the brain and whose dysfunction is present in

a high number of brain disorders, including MS (Rocca et al., 2010;

Rocca et al., 2016; Rocca et al., 2018). Moreover, these regions,

together with medial and superior temporal regions, have strong and

extensive connections with several other brain regions (Rocca

et al., 2016), thus facilitating functional integration. A decreased RS

FC among these areas is then suggesting the presence of impaired

functional integration in MS, which might be among the causes of

clinical impairment (Rocca et al., 2016; Rocca et al., 2018). In addition,

we found a decrease of occipital RS FC in both MS phenotypes

vs. HC, which might be related to visual impairment often occurring in

this disease. Finally, we would like to highlight the strong increase of

RS FC among different subnetworks we found in RRMS patients

F IGURE 8 This figure illustrates the identification of RS FC abnormalities between HC and PMS patients. Top row: The first two columns
show the covariance-based reference connectomes of each group, along with the division of the full RS FC matrix into subnetworks. The last
column shows the difference between reference connectomes, with significantly changing connections in terms of the difference between

covariance (blue: decreased RS FC, red: increased RS FC in the second group compared to the first one). Bottom row: connectograms represent
between-group RS FC differences within subnetworks (left) and between subnetworks (right)
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vs. HC, which tended to decline in PMS patients vs. HC. This finding

suggests that, at the early disease stage, increased RS FC among

regions belonging to different functional systems might be compensa-

tory, and help to maintain moderate disability levels (Hidalgo de la

Cruz et al., 2021; Liu et al., 2017; Roosendaal et al., 2010). This mech-

anism is likely to be lost in PMS patients, which typically show

decreased long-range RS FC and severe clinical/cognitive deficits

(Rocca et al., 2010; Rocca et al., 2016; Rocca et al., 2018).

6 | CONCLUSION

This work describes a novel computational framework to discriminate

between HC and different phenotypes of MS patients based on FC

matrices computed from RS fMRI data. Briefly, the proposed method

consisted of a graph clustering framework that employs a DS cluster-

ing algorithm to cluster RS FC matrices on the Riemannian manifold

and considering the properties of SPD matrices we used geodesic

metric (more specifically, Log-Euclidean distances), which, in this

context, proved to be superior to the Euclidean metric. Besides this

clustering approach, a novel idea of data encoding was also suggested.

The hypothesis we intended to test with this approach is that group-

ing subjects with similar FCs help compensating for intrinsic intersub-

ject variability, thus facilitating the extraction of features significant

for disease phenotype characterization. The framework has been con-

ceived to study how the overall connectivity changes according to the

different disease phenotypes. Classification is only used to detect the

most discriminant features. Nevertheless, it can be used in clinical

applications where the disease phenotype for new subjects can be

determined using the already trained framework, processing the sub-

jects as test samples.

More in detail, classification features have been obtained as the

geodesic distances between each subject's RS FC matrix and the cen-

troids of the clusters defined through DS clustering. Both clustering

and classifier training occurred on training folds, in order to prevent

double-dipping. In testing, we computed the distances of each test

sample from the centroids defined on the training set and then used

these distance values to test the performance of the trained classifier.

F IGURE 9 This figure illustrates the identification of RS FC abnormalities between RRMS patients and PMS patients. Top row: The first two
columns show the covariance-based reference connectomes of each group, along with the division of the full RS FC matrix into subnetworks. The
last column shows the difference between reference connectomes, with significantly changing connections in terms of the difference between
covariance (blue: decreased RS FC, red: increased RS FC in the second group compared to the first one). Bottom row: connectograms represent
between-group RS FC differences within subnetworks (left) and between subnetworks (right)
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In order to minimize the impact of fold selection, the results presented

in the article are relative to 100 repetitions of the training algorithm.

This study also proved the viability of the encoding scheme of RS FC

matrices by using DS clustering and then defining a vector space rep-

resentation according to their distance from cluster centroids.

The results of this study proved that MS patients at different

stages of the disease, observed as a whole, were well discriminated

from HC in terms of RS FC. This method might be beneficial in monitor-

ing disease development and improving patient management. Ideally,

the results presented here can be extended in the future to longitudinal

studies, so that, instead of a classification task, this approach can be

used to constantly monitor the evolution of single subjects and provide

a pharmacological therapy tailored to the predicted changes.
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