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Abstract: The need to estimate the orientation between frames of reference is crucial in spacecraft
navigation. Robust algorithms for this type of problem have been built by following algebraic
approaches, but data-driven solutions are becoming more appealing due to their stochastic nature.
Hence, an approach based on convolutional neural networks in order to deal with measurement
uncertainty in static attitude determination problems is proposed in this paper. PointNet models
were trained with different datasets containing different numbers of observation vectors that were
used to build attitude profile matrices, which were the inputs of the system. The uncertainty of
measurements in the test scenarios was taken into consideration when choosing the best model. The
proposed model, which used convolutional neural networks, proved to be less sensitive to higher
noise than traditional algorithms, such as singular value decomposition (SVD), the g-method, the
quaternion estimator (QUEST), and the second estimator of the optimal quaternion (ESOQ2).

Keywords: attitude determination; machine learning; neural network; measurement uncertainty

1. Introduction

The process of finding rotations between frames—although classic—is recurrent. It
consists of providing information about the difference between some objects of interest that
are seen from the perspective of the body frame and in the desired frame of reference. This
difference is represented as a rotation operation; thus, the goal is to find the rotational axis
and rotational angle that best rotate a frame given by (@, b, and ) to another frame given
by (X, ¥, and Z). Finding the rotation between frames is applied in many fields, such as
robotics [1,2], navigation and control [3], and computer graphics [4,5], among others [6].

In spacecraft navigation, this process is called attitude determination, and typically,
various sensors are used to collect information about the objects of interest. These data
are returned as a vector, which is known as a measurement or observation vector. It is
possible to obtain two orientation parameters from a given measurement vector. However,
three orientation parameters are necessary in order to determine an attitude. This leads
to an underdetermined problem if only one vector (N = 1) is used, since the number of
parameters is less than the minimum number that is required. On the other hand, the
problem will be overdetermined if two measurement vectors or more (N > 2) are used,
since four orientation parameters will be used, i.e., there are too many variables.

Following this reasoning, some measurements are needed to determine a proper
attitude such that 1 < N < 2. However, this is a problem because it is not possible to obtain
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a non-natural number of measurements; thus, a set of measurement vectors are needed in
order to estimate the proper orientation. The first proposed solution was called Wahba’s
problem [7], a least-square approximation given by:

1& — N
L(A) = 5 Z aj||b; — Ar;||%, such thatn > 2 1)
i=1

where l;: is an observation vector in the body frame, 1 is a vector in the reference frame, a;
is a weight value for each observation vector, and A is the optimal attitude matrix. This
first approach to attitude determination led to the development of several new algorithms
derived directly from Equation (1), resulting in a trade-off, as more robust models are
slower to converge, requiring more computational effort, and very fast algorithms may
result in low accuracy [8], thus requiring careful fine-tuning.

To solve the problem, it is possible to use a combination of artificial neural networks
(ANNSs) with Kalman filters (KFs) [9] or even recurrent neural networks (RNNSs) in order to
estimate the new attitude [10]. These approaches require some previous attitude informa-
tion in order to adjust the predictions, that is, they depend on time information. Therefore,
these types of algorithms are known as attitude estimation or dynamic attitude determi-
nation algorithms. This paper focuses on another type of algorithm that does not need
previous attitude information for the prediction, resulting in a static attitude determination.

The quaternion estimator (QUEST) method [11,12], singular value decomposition
(SVD)-based method [13], second estimator of the optimal quaternion (ESOQ2) method [14],
and g-method [15,16] belong to the static attitude determination class of algorithms, since
their inputs are observation vectors that are taken simultaneously or close enough in time
that they can ignore spacecraft motion between the measurements. Therefore, they can
determine the attitude at that given instant. Conversely, the elimination of the time variable
makes this class of algorithms susceptible to the quality of the input data, i.e., the precision
of the sensors drastically affects the caliber of the results. Due to their nature, they have
a crucial role in the “lost-in-space” scenario [17], where the spacecraft has no previous
information about its attitude. Therefore, the navigation system must instantaneously infer
an orientation by relying on the quality of measurements taken by its sensors, since this
directly affects the performance of the algorithms [18].

In this context, this paper focuses on applying machine learning to the mitigation of
the impact of the measurements’ perturbations on the predictions. Specifically, this paper
proposes a neural-network-based approach to determining the rotation difference between
two coordinate frames based on a convolutional neural network (CNN) architecture. The
contribution of this paper is based on the strategy of choosing the model by considering its
uncertainty. Furthermore, this paper will show how the model’s performance compares
with that of traditional algorithms and if this data-driven approach to static attitude
determination can mitigate the impact of input distortion.

2. Background
2.1. Attitude Representations

Rotation matrices can be parametrized in many different ways, and the most com-
monly used tools are the Euler axis/angle, Euler angles, and quaternions. The Euler
axis/angle describes a rotation as a unit vector € that lies along the rotation axis and a
rotation angle ¢ about this axis. Although it has a clear physical interpretation, its axis is
undefined for ¢ = {0,271}, that is, it is not a continuous representation.

Euler angles are defined as a set of three parameters: ¢, 8, and ¢. These angles break a
single rotation into a sequence of three rotations using two intermediate frames throughout
the process. Thus, it is relatively easy to interpret the problem. However, for 6 = £+90°,
the solution degenerates, leading to a problem called “gimbal lock”, which causes ¢ and
f to move in the same fashion. That is why one should be careful when using Euler
angle representations.
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Quaternions are four-dimensional vectors that embed the rotation axis and the rota-
tion angle in a complex domain. Despite not having an apparent physical interpretation,
they are the preferable form of parametrization for specialists, since they do not require
trigonometric functions and avoid the “gimbal lock” issue. However, this type of repre-
sentation has an interesting property where § = —{, that is, the antipodes represent the
same rotation. Therefore, they are not a continuous representation.

In trying to find a valid continuous representation for SO(3), a new method was
proposed by [19]. They assumed that a representation space R produced by a neural
network could be mapped into the original space X € SO(3) through a function f : R — X’
and mapped back through a functiong : & — R.

The function f is a mathematical function that is used as part of the forward pass of
the network at both the training and inference time. For 6D representations, this function is
guaranteed to return an orthogonal 3 x 3 matrix, and the loss function can then be applied
to it. This mapping function is defined as follows for a 6D representation:

f a; a» = l_;l _b>2 _b>3 (2a)
I ]
N(31) ifi=1

bi= [{N(Z2— (b;-32)by) ifi=2 (2b)
b x by ifi=3

where N(-) stands for the normalization function, x represents the vector cross product,
represents the vector dot product, and the column vectors a7 and @ are vectors from R
that are estimated by the network.

2.2. Related Work

As mentioned before, if a spacecraft needs to know its orientation, some prior informa-
tion must be gathered by sensors. They return the data as three-dimensional unit vectors
representing the pointing direction of an object of interest with respect to the body frame.
From these data, it is possible to find a proper rotation that will project the observations
onto the target frame. There is an extensive field of study covering regression in rotation
representations by using ANNSs. In the computer vision field, there is a problem that is
similar to the one described before, whose premise is to find the orientation of objects with
respect to the camera. This task also shares the same goal as attitude determination, that is,
it determines the orientations or poses of objects of interest from one coordinate frame to
another. In the context of computer vision, this task is referred to as pose estimation.

Xiang et al. [20] tried to estimate the rigid transformation from the object coordinate
frame O to the camera coordinate frame C given an input image. Each image contains a
collection of objects, and the main task is to find their poses (location and orientation), which
are represented by a 3D rotation R and a 3D translation T parametrized by quaternions.
Thus, they can be written as R(q). They used the mean squared error loss function to
minimize the error, where they measured the distance between a set of 3D points X € O
rotated by both the ground-truth rotation R(q) and the predicted rotation R(§). However,
using this approach, the network performed poorly when the rotation angles were close to
0° and 180°.

Do et al. [21] used an architecture called mask R-CNN, which took an RGB image
containing several objects as input and returned their classes, segmentation masks, and
bounding boxes. They added a fourth output on top of this architecture, which tried to
estimate the orientation and localization of each object. This output layer was a four-
dimensional vector, where the first three scalar values represented the rotation and the
last one represented the translation. However, instead of using representations, such as
Euler angles and quaternions, they made use of Lie algebra so(3) to represent the rotation,
since a skew-symmetric matrix of an arbitrary element from s0(3) could be mapped to the
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SO(3) through exponential mapping. Hence, they only needed to regress a vector X € R3
to define a proper rotation.

Point clouds can be interpreted as 3D vectors that describe a shape or object in
some arbitrary coordinate frame; hence, this type of data can provide a lot of useful
information, such as depth, volume, orientation, and location. In trying to explore this
type of information, a novel approach [22] was proposed to address the 6D pose estimation
problem: Instead of using RGB images, they used point cloud segments as the input to the
system. The proposed neural network was an adaptation of the PointNet architecture [23],
which takes a set of point clouds as input and returns a rotation matrix that best describes
the orientation of the input data.

Those works addressed the 6D pose estimation task by considering different types of
input data, such as RGB images and point clouds, as well as distinct attitude representations.
Although all of them achieved good results for the task, they presented some limitations.
First, their attitude representations were not adequate for the job because they showed
discontinuities for certain angles. Second, the input data did not offer clear information
about the orientation or relationship between the coordinate systems, thus demanding
more effort from the network to detect those features.

In this context, this paper proposes a model that uses a different type of input data,
which is denoted as an attitude profile matrix; this embeds the similarity between two coor-
dinate frames and alleviates the model’s effort. In addition, the proposed model uses another
type of attitude representation that can be learned and does not suffer from discontinuities.

3. Methodology

PointNet is a neural network architecture that accepts raw point clouds as input and
is robust with respect to input perturbation and corruption [24]. Taking into account the
promising results of PointNet, several extensions have been developed [25-28]. Hence,
PointNet was chosen as the base architecture for the experiments presented in this paper.
Figure 1 shows the network structure.

(P,9, 64) (P, 1,256)

Figure 1. B-Swish (Modified PointNet).

Some modifications have been made to the traditional PointNet architecture in order to
improve its performance. In the vanilla PointNet, a set of vectors in the original coordinate
frame and another set in the target coordinate frame are used as input and fed into the
model in pairs. However, in the proposed model, they were replaced by the attitude profile
matrix. In fact, the same pairs of vectors were used to build the profile matrix according
to Equation (3). By flattening this matrix, an array with the shape (P,9,1) was generated,
where P represents the batch size. However, it was considered that all weights a; were
equal (star-tracking scenario) because it led to lower errors when compared to random
weights, even in the evaluation phase, as can be seen in Section 4.1.

B=1) ab;r;". (3)

All one-dimensional convolutions were built using a kernel of size of 9. However,
in all but the last convolution, the shape of the feature maps was maintained and, as a
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result, after applying the convolution operation, the second dimension of the tensor did not
change. Next, all rectified linear unit (ReLU) [29] activation functions were replaced with
Swish activation [29] because it turned out that ReLU led to more significant errors during
training and evaluation. Finally, as the last operation, the mapping function f, which maps
a latent rotation representation R to SO(3), was implemented, as performed in [19].

Dropout layers were added after each activation function [30]. The reasons were
twofold: to act as a regularizer to prevent overfitting and to measure the model uncertainty.
Since the dropout technique randomly drops some neurons with a probability p at each
forward pass, each update to a layer during training is performed with a different view of
the configured layer, forcing the knowledge to be spread out across all neurons equally;,
thus acting as a regularizer. This can be interpreted as if several neural networks are being
trained simultaneously because at each forward pass, the model “changes” its architecture.

Notice that the regular dropout could be interpreted as a Bayesian approximation of
a Gaussian process [31]. By applying the dropout during both training and inference, it
is possible to analyze it as if predictions from many different networks have been made,
that is, a Monte Carlo sample from the space of all possible networks. Hence, it is entitled
Monte Carlo Dropout (MCD) [32]. Therefore, a distribution of predictions is gathered and
a measure of uncertainty of the model can be evaluated.

In an actual application, the star-tracker algorithm returns two pairs of vectors from a
star image: the body vectors, which represent each star in the body frame, and the reference
vectors, which represent the same stars collected from the satellite’s onboard database.
The proposed model uses those two pairs of vectors to build the attitude profile matrix
according to Equation (3). Afterward, the model reads a flattened version of this matrix
and estimates the orientation matrix.

3.1. Implementation Details
3.1.1. Dataset

The traditional algorithms were designed to determine the best attitude representation
given a set of unit observation vectors and their respective weights. In essence, those
vectors are random, and the only requirement is that they must be unitary and have a
boresight axis, which is the axis that expresses the direction of the observed object.

Following this reasoning, the dataset was built according to the number of samples
and the number of observation vectors per sample. First, random unit vectors with arbitrary
boresight axes were generated, forming an array with a shape (S, O, 3), where S stands
for the number of samples, O is the number of observation vectors, and the last dimension
is the number of axes of each vector. The last dimension was set to 3, since the data had
components in R3. The first collections of vectors were chosen to be the reference vectors .

The random rotation matrices Arye Were generated through Equation (4), where the
angles were drawn from a uniform distribution ranging from — rad to 7 rad, and the
axis vectors were drawn from a uniform distribution.

air a2 413
A= |ay axp a3

as1 Az 433
a11 = cos¢ + e3(1 — cos¢)
a1y = e1ez(1 — cos¢) + ezsing
113 = e1e3(1 — cos¢) — ezsing
ap1 = e1ez(1 — cosg) — ezsing @)
ayy = cosg + e3(1 — cos¢)
ap3 = eze3(1 — cosp) + eqsing
a3 = ere3(1 — cos¢) + ezsing
a3y = eze3(1 — cos¢) — egsing

33 = cos¢ + e3(1 — cosg).
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The random direction cosine matrices (DCM) with shape (S, 3, 3) served as the ground-
truth attitude matrices [33]. The reference vectors were simply rotated by each attitude
matrix to generate the body vectors b with a shape (S, O, 3) as follows:

bi = Agryei i+ 0j ®)

where 1; is a vector of measurement errors drawn from a zero-mean Gaussian distribution
N(0,0;) with standard deviations {¢; | 107® < ¢; < 0.01} serving as additive white
Gaussian noise (AWGN) [34].

3.1.2. Training

The dataset was generated with the total number of samples S = 2!3, where 30% was
used as the testing dataset and 4% as the validation dataset. The optimizer used was the
Adam algorithm [35] with a learning rate of Ir = 10~% and a weight decay of 10~ being
applied every 500 epochs. The Ir was also reduced by a factor of ten every 500 epochs.

The work was developed using the Tensorflow 2 framework, and the models were
trained on a Nvidia GeForce GTX 1060 6 GB GPU (graphic processing unit). In order
to train the network, the geodesic loss function defined by Equation (6) was used to
minimize the error. The matrix A is the rotation difference given by the multiplication
AtmeAgre 4- This equation was also used as a metric, along with Wahba's loss, which is
defined by Equation (1), where all weights a; were considered equal during the evaluation.
Equation (6) was clipped to lie in the range [—1 + eps, 1 — eps] in order to avoid numerical
issues, where eps = 1077 is enough.

P(A) = cos™! (t(Az)_l) (6)

To validate the model’s performance, several training routines were scheduled. For
each routine, different values for O were used to check if this could bring a meaningful
impact on the model’s robustness. Different models were trained, considering a value for
O that ranged from 3 to 7. Every training was performed by considering 2000 epochs with
a batch size of 64. In addition, for each O, three different dropout rates were considered:
100/0, 150/0, and 20%.

4. Results
4.1. Model Training

Initially, the model was trained with an earlier version of the architecture presented in
Section 3, where the pairs of body and reference vectors, which were concatenated along
the last dimension, were defined as the input to the network. The number of observation
vectors was set as the kernel size parameter in the convolution layers. In all except the last
convolution, the shape of the feature maps was maintained. In this assessment, the ReLU
activation function was used instead of Swish.

Variations were made to improve the model, since this assessment did not achieve
acceptable error values. The pairs of vectors were replaced by the attitude profile matrix,
and the architecture presented in Figure 1 was formulated. However, ReLU was considered
instead of Swish. Throughout this paper, this model will be called B-ReLU. This model had
two versions: B-ReLU-A and B-ReLU-B. The former considered a star-tracking scenario,
and the latter considered the actual weights for each pair of inputs when building the
attitude profile matrices.

It was possible to notice that using the actual weights to build the B matrix led
to poor results; thus, it was decided to use the star-tracking scenario. Since the Swish
activation function showed more promising results than the ReLU activation function and
its variations, this function was defined as the default in the following analyses. Then, the
final model was built (see Section 3), which was called B-Swish.
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After training the models, their performance was measured by using the validation
set. The models whose parameters corresponded to the slightest error in Wahba’s loss were
tested. As shown in Figures 2 and 3, the hyperparameter O led to better results on the
validation dataset when it was increased. This decrease in error indicated that the network
was capturing more insights about the attitude profile matrix because it was using more
observation vectors. Moreover, as the dropout rate increased, the network tended to have
worse results, indicating that the parameters were over-penalized.

The network struggled to converge when using pairs of body and reference vectors
as inputs. Moreover, when using the accurate weights to build the attitude profile, worse
results were obtained. The Swish activation function improved the network performance;
thus, it was chosen as the final architecture. It was still necessary to verify which of the
B-Swish models was more reliable and if the results really reflected the system’s expected
behavior when subjected to unseen scenarios.

0.0200 Model Dropout (%)
—— B-Relu-B — 10
0.0175 ~%- vec pair 15
= B-Relu-A —— 20
0.0150
[
o
=
£0.0125
[%2]
g
%0.0100
= 0.0075
0.0050 i
0.0025 == : :
3 4 5 6 7

Observations

Figure 2. Wahba's loss.

X
0—
12 o
2
S 10
o
o
£ 8
()
o Model Dropout (%)
‘g - B-ReluB — 10
g 6 = ~-%-- vec pair 15
o} i = B-ReluA —— 20
&) PR —#- B-Swish
]
=
2 N 2 '
___________ S e
3 4 5 6 7
Observations

Figure 3. Geodesic error in degrees.

4.2. Model Choice

The models’ performance was verified by using the twelve test cases specified by
Markley [36]. Each test case contains a collection of vectors T; and their corresponding
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measurement errors 0. These T; vectors represent what, in practice, would be the output
of the spacecraft’s onboard sensors, such as star trackers, sun sensors, magnetometers,
and others. Notice that these data would be returned as three-dimensional vectors. The
0; errors represent how accurate the respective observation vectors are, that is, they hold
the information about the precision of the sensors that generated these sets of vectors. The
body vectors l?i were constructed by following Equation (5), where A¢rye is defined as

0352  0.864 0.360
Atrge = | —0.864 0152 0.480]. @)
0360 —0.480 0.800

The first four cases consider an ideal scenario, where all observation vectors lie along
the boresight axes and are orthogonal to each other. The fifth one demonstrates a case where
the vectors are orthogonal but do not lie along the boresight axes. From the sixth scenario
onwards, they consider a narrow-field-of-view star tracker, where the rotation about the
tracker’s boresight is much less well determined than the pointing of the boresight. Despite
the fact that they are handcrafted cases, the tests simulate some interesting scenarios that
could happen in an actual application and give an idea about an algorithm’s behavior
when subjected to real situations.

The twelve cases were specified as follows:

Case1 In this case, there are three measurement vectors with measurement noise 0 =
0y = 03 = 1070 rad as follows:

T =1[1,0,0]T
T, =[0,1,0]" 8)
T3=1[0,0,1T

Case 2 The same ¥ and T, vectors as those from Case 1 are used with measurement noise
0l =0y = 107 rad.

Case 3 The same three vectors from Case 1 are used, but the noise is increased to 7 =
0y = 03 = 0.01 rad.

Case 4 The same as Case 2, but the the noise is increased to 07 = 0» = 0.01 rad.

Case 5 Two reference vectors are used with measurement noise 0y = 107° and o, = 0.01
rad as follows:

T, =[0.6,08,0]T

o )
¥, = [0.8,—0.6,0]T.

Case 6 In this case, there are three measurement vectors with measurement noise 0q; =
0y = 03 = 1070 rad as follows:

T =[1,0,0]T
T, = [1,0.01,0]T (10)
T3 = [1,0,0.01]T.

Case 7 The same T and T» vectors as those from Case 6 are used with measurement noise
01 = 0 = 1070 rad.

Case 8 The same three vectors as those from Case 6 are used, but the noise is increased to
01 =0y =03 = 0.01 rad.

Case 9 The same as in Case 7, but the noise is increased to oq = 0, = 0.01 rad.

Case 10 Three reference vectors are used with measurement noise ¢; = 107° rad and
0y = 03 = 0.01 rad as follows:
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T =1[1,0,0]T
T, = [0.96,0.28,0]T (11)
T3 = [0.96,0,0.28]T.

Case 11 The same T; and T, vectors as those from Case 10 are used with measurement
noise o3 = 107° rad and 0, = 0.01 rad.

Case 12 The same ¥1 and T vectors as those from Case 10 are used with measurement
noise 07 = 0.01 rad and 0, = 107° rad.

For each case, the attitude profile matrix was built as defined in Equation (3) in order
to serve as the input to the neural network, where a star-tracking scenario was considered,
that is, each observation vector was equally weighted. Then, with the dropout layers
enabled, N forward passes were executed through the network to sample a set of possible
outputs. In those tests, the definition N = 1000 was set.

After each forward pass, Wahba's error was evaluated by using Equation (1). The
weights given by the test case were considered—and are defined in Equation (12b)—and
Apreqd Was considered instead of Atrye to measure the true distance. This led to an array of
errors with size N for each test case. At the end of the N forward passes, the mean error
was measured for each test case, as shown in Table 1. The error values are displayed on a
logarithmic scale, where the bold entries represent the smallest values.

o 1\"!
Otot = (Z 2) (12a)

i=1 %

a = 2ot (12b)
i

When choosing the most eligible model, if only the errors displayed in Table 1 were
considered, it would still not be possible to notice any meaningful insights. The models
were trained using four and five observations, and the use of a dropout rate of 10% was,
in general, better than when using other rates. Thus, a procedure described in [37] was
followed, which evaluated the rotation error with respect to the average rotation matrix of
the predicted DCMs.

Table 1. Wahba's error for each model (the best result for each model is defined in bold).

Model 30bs 4o0bs 50bs 60bs 70bs
Dropout Rate (%) 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20

Case
1 —-2.03 —-196 —-190 —2.04 —-2.00 —193 —-217 —2.02 —-199 —210 —-2.08 —199 —-214 —2.07 —-1.97
2 -1.81 —-1.75 —-1.68 —-186 —178 —1.73 —192 —-1.82 —-1.76 —1.86 —1.85 —1.76 —1.95 —1.80 —1.76
3 —-2.00 —194 —-190 —206 —198 —192 -—-212 —2.02 -197 —2.08 —-2.05 —198 —211 —2.06 —1.97
4 -180 —-1.74 —-1.69 —186 —178 —1.74 —-192 —183 —-175 —185 —-1.84 —-1.75 —-191 —-1.79 —-1.77
5 -1.82 —-175 —-1.69 —-181 —-1.72 —-1.71 —-194 —-1.79 —-1.78 —190 —-1.88 —1.79 —193 —-1.79 —1.74
6 -194 -187 -18 —-2.05 —-197 —-191 -18 -187 -1.71 —-1.75 —-1.78 —-1.73 —-1.83 —-1.77 —-1.75
7 -1.77 —-167 —-1.65 —1.87 —-1.78 —-1.72 —-1.70 —1.68 —153 —158 —1.61 —153 —1.65 —1.60 —1.57
8 -192 —-185 —-1.83 —2.02 —196 —1.87 —-189 —186 —1.69 —1.75 —1.77 —1.74 —1.82 —-1.76 —1.74
9 -175 —-168 —-1.65 —1.8 —-1.78 —1.71 —-1.71 —-1.69 —-152 —156 —-1.60 —155 —1.65 —1.60 —1.56
10 -195 —-192 —-183 —-1.88 —191 -1.88 —-192 —-190 -1.81 -1.73 —-1.73 —-1.76 —1.73 —1.70 —1.64
11 —-1.75 —1.68 —1.65 —1.65 —1.63 —1.62 —1.67 —1.65 —1.65 —1.64 —156 —154 —154 —1.58 —1.54
12 —156 —153 —-153 —154 —-158 —157 —-149 —-1.64 —153 —137 —-144 —146 —139 —146 —1.35

Given the set of predicted DCMs {ﬁj |j=1,2,..,N}, it was possible to calculate an
average rotation matrix Rayg, that is, a matrix that represented the mean of a distribution
of rotation matrices. This average rotation was found as the orthogonal projection of a
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matrix R = N~! Z]N:l Rj and can be further reviewed in [38], which used an SVD approach
in order to evaluate Ravg.

Once Ravg was determined, the noise matrices AR; could be evaluated. The new
matrices held the orientation differences between each predicted DCM ﬁj and the average
DCM Rayg, which could be found by performing the following matrix multiplication:

T 4
AR]' (?jr ij ) Rang (13)
where each AR; is parametrized by a rotation axis €; and a rotation angle ¢;. After
finding the noise matrices, their respective Euler vectors Wj = ¢; €; were extracted, and a
covariance matrix was calculated as follows:

—> 1 —> — — —> — —>
C(W) = = [Wy, Uy, ..., UN][U1, W2, ..., UN] T (14)

Since dj is a representation of the difference rotation matrix AR;, by taking the
diagonal entries of C(1), it is possible to have the variances in the x, y, and z axes of the
predicted DCMs with respect to Ravg. This procedure was performed for each test case
to measure the uncertainty of the rotation axes predicted by each model. The measured
variances (in degrees?) for each dropout rate are displayed in Figures 4-6.

The models with a dropout rate of 10% had lower variance levels in the three axes for
the majority of the test cases. It is worth mentioning that these models were tested with
the same dropout rate as that with which they were trained, that is, the models that were
trained with a dropout rate of 10% were tested with the same rate, and so on. By doing
that, it was possible to verify whether the number of observation vectors presented the
same behavior independent of the dropout rate used. For the U}, and U, components, the
values were similar, but the model that was trained using four observations had smaller
variances for the Uy component compared to the others.

These results led to the choice of the model that was trained with four observation
vectors as the best option. Since the experiments dealt with directional data, it was not
possible to use the standard equations of the mean and variance to calculate the uncertainty.
Nonetheless, the dropout procedure was still applied during the inference, so it generated
different outputs for the same input. Therefore, it was still possible to use those predictions
and the covariance approach to estimate the uncertainty.
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Figure 4. Uncertainties in the axes for each test case considering a dropout rate of 10%.
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Figure 6. Uncertainties in the axes for each test case considering a dropout rate of 20%.

The distance between the true angle (extracted from Equation (7)) and the angles from
the predicted attitude matrices Apreq Was measured. For each test case, N predictions
were taken, with their angles extracted using Equation (6). Figures 7-9 show how the
absolute angular differences (in degrees) were spread for the three dropout values. It can
be noticed that the dispersion of the differences was narrower for the model that used four
observation vectors.

It was verified that the model trained with four vectors had the best results. To better
understand the models, two new tests were performed. The first one evaluated the behavior
of the models when using another dropout rate during the testing. The other estimated
how capable the models were of retaining knowledge when the number of switched-off
neurons was varied. Wahba'’s error and the variance of the B-Swish-4obs model were
evaluated as they were previously, but the dropout rate was swept from 0% to 20% with
steps of 2.5%. As shown in Figure 10, when the dropout rate increased, it was possible
to notice that the model trained with 10% could not retain much knowledge compared
with the other models, even though it achieved lower errors when the dropout layer was
disabled (0%).
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Figure 9. Dispersion of the absolute angular difference when using a dropout rate of 20%.
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Similarly, the model trained with 10% became more uncertain of its predictions as the
testing dropout rate increased, as can be seen in Figure 11. The upper bound refers to the
variance in the x-axis, the lower bound refers to the z-axis, and the dashed lines refer to the
variance in the y-axis.
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Figure 10. The evolution of Wahba's error for test case 8.
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Figure 11. The evolution of the variance for test case 8.

The results presented in Figures 10 and 11 are only relevant if the model is running in
an unstable environment, that is, it is expected that some neurons could “be lost” during
inference; thus, the model has to be robust against the number of active neurons. To
perform a comparison with the traditional algorithms, it was necessary to use the best
scenario, that is, the B-Swish-4obs trained with a dropout rate of 10%, since it resulted in
the lowest Wahba’s error when the dropout layers were disabled.

4.3. Comparison with Traditional Algorithms

To have confirmation that the chosen neural network model is the most appropriate
one for the problem in question, a benchmark was carried out by using QUEST [39], an
SVD-based method [40], the g-method, and ESOQ2. To do that, the twelve test cases defined
above were used, but now, S samples were generated for each case and their respective
measurement noises N (0, ;) were applied. For the tests, S = 4000 was considered.

For each sample used in the algorithm, Wahba’s error was calculated by using Equa-
tion (1) with the value of a; given by each test case. After all samples had been evaluated,
the mean of all errors Z}S:1 L(ﬁj) was evaluated for each case. This procedure was executed
for all algorithms. The dropout layers were disabled during inference since there was
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no need for evaluating the model uncertainty in this phase. The results are depicted in

Figure 12 on a logarithmic scale for better visualization.
LLMM uw
1 2 3 4 11 12

Figure 12. Comparison of the evaluation of Wahba's error among some algorithms.
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The SVD-based and g-method algorithms achieved the lowest errors, since they were
the most robust. In some situations, such as in cases 3, 4, 8, and 9, all algorithms had similar
results, since the inputs to the system had more significant associated measurement noise.
In spite of the fact that the neural network performed worse in most cases, the predictions
were more constant, that is, when considerable noise was introduced, the system error did
not increase proportionally in the same way as in the other algorithms.

The relationship between the measurement noise and Wahba’s error is presented in
Figure 13. This analysis considered a weighted average of the measurement noises for
each test case by using Equation (12). It is possible to notice that Wahba's error remained
constant in the neural network when the weighted average increased, unlike with the
traditional algorithms. In addition, the presence of a single accurate observation vector
(low-valued ¢) in a test case was enough to prevent the conventional algorithm from
performing poorly. Case number 10 is an example of this statement, since the traditional
algorithms become less affected by the noise despite having two measurement noises with
higher values.
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Figure 13. Impact of the average measurement noise on model performance.
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5. Conclusions

This paper proposes a neural network model for the problem of static attitude deter-
mination based on an existing architecture called PointNet. Modifications to the system’s
layers, input shapes, and output shapes were performed due to the poor results in prelimi-
nary tests. It was noticed that changing the ReLU activation function to Swish resulted in an
improvement in the loss with the validation set. The most noticeable gain happened when
the input used in the system was changed, which was probably because the network was
unable to obtain meaningful information about how the pairs of observation and reference
vectors were correlated. In addition, traditional algorithms use calculation techniques that
may require more computational resources, such as SVD, eigenvectors, and eigenvalues.
With the proposed method, after the neural network is trained on Earth (offline training),
the embedded system will rely on pre-established weights; thus, it will only require the
active calculation of multiplications and additions.

Using a star-tracking scenario during the training stage resulted in smaller values of
Wahba'’s error during the testing stage than those obtained when using the actual weights.
This is interesting because it removes the need to store the actual weights a; in order to
build the attitude profile matrix B. The error with the validation data indeed decreased
when the number of measurement vectors increased. This did not reflect the actual behavior
when the test case scenarios were run. This might be because the test cases used only up
to three vectors, and the models that were trained using more observation vectors could
not generalize very well for fewer vectors. However, for the same test cases, the variances
of the predicted DCMs were not out of line around the y and z axes when measuring the
uncertainty. On the other hand, they had significant differences for the x axis, especially
for cases 6 to 12, where the input vectors had a boresight along the x axis.

While the chosen model could not surpass the traditional algorithms when the input
vectors had more significant measurement noise associated with them, it did not suffer from
this noise as the other algorithms did, achieving similar values of Wahba's error; therefore,
it is less sensitive to the input noise. As future work, it is suggested Bingham'’s distribution
concepts be incorporated into the model. As our output data are somehow a type of
directional data, it may be possible to have a better estimation of the uncertainty, perhaps
by reducing this value and obtaining some improvements in Wahba'’s loss. Thus, the
effective use and testing of the proposed solution in real situations need to be considered.
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