
Efficient Analysis of Cyclic Redundancy
Architectures via Boolean Fault Propagation

Marco Bozzano , Alessandro Cimatti ,
Alberto Griggio , and Martin Jonáš(�)

Fondazione Bruno Kessler, Trento, Italy
{cimatti,bozzano,griggio,mjonas}@fbk.eu

Abstract. Many safety critical systems guarantee fault-tolerance by us-
ing several redundant copies of their components. When designing such
redundancy architectures, it is crucial to analyze their fault trees, which
describe combinations of faults of individual components that may cause
malfunction of the system. State-of-the-art techniques for fault tree com-
putation use first-order formulas with uninterpreted functions to model
the transformations of signals performed by the redundancy system and
an AllSMT query for computation of the fault tree from this encoding.
Scalability of the analysis can be further improved by techniques such as
predicate abstraction, which reduces the problem to Boolean case.
In this paper, we show that as far as fault trees of redundancy archi-
tectures are concerned, signal transformation can be equivalently viewed
in a purely Boolean way as fault propagation. This alternative view has
important practical consequences. First, it applies also to general re-
dundancy architectures with cyclic dependencies among components, to
which the current state-of-the-art methods based on AllSMT are not
applicable, and which currently require expensive sequential reasoning.
Second, it allows for a simpler encoding of the problem and usage of
efficient algorithms for analysis of fault propagation, which can signif-
icantly improve the runtime of the analyses. A thorough experimental
evaluation demonstrates the superiority of the proposed techniques.

1 Introduction

Fault-tolerance is a fundamental property of safety critical systems that enables
their safe operation even in the presence of faults. There are many ways to
ensure fault-tolerance, often based on redundancy: spare parts are available for
backup and are ready to take over with different degrees of promptness (e.g.,
hot/warm/cold standby), or with multiple replicas running in parallel. The latter
is a common approach to fault-tolerance in computer-based control systems,
where the results computed by the independent replicas are combined together
by means of voters. The idea dates back to the pioneering space application in
Saturn Launch Vehicle [12], and has then been adopted in the Primary Flight
Computer [19] of the Boeing 777. The idea is becoming prominent with the
advent of modern Integrated Modular Avionics [16], a cost-effective solution for
the management of highly intensive software control systems.

http://orcid.org/0000-0002-4135-103X
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0003-4703-0795

2 M. Bozzano et al.

M3

M1

M2

(a) Reference non-redundant system.

M3

M1

M1

M1

V

M2

M2

M2

V

(b) TMR redundant system with three
replicas of modules M1, M2, whose results
are combined by a voter.

Fig. 1: Network of computational modules with cyclic dependencies, extended by
triple modular redundancy.

M

M

M

V

(a) V111

M

M

M V

(b) V001

M

M

M V

(c) V011

M

M

M

V

V

(d) V122

M

M

M

V

V

V

(e) V123

Fig. 2: Selected ways of extending a single reference module M with triple mod-
ular redundancy (using 1, 2, and 3 voters) [6].

One of the most used instances of the approach to redundancy by using
module replicas is the triple modular redundancy (tmr) schema, in which the
computational modules are replaced by three redundant copies, whose results can
be combined by one to three voters. An example of using tmr to add redundancy
to a reference non-redundant architecture is shown in Figure 1. Note that there
are multiple ways of combining the results of a single triplicated computational
module by voters, some of which are shown in Figure 2 [6].

Assessing the actual degree of fault-tolerance of a redundant architecture
is directly related to the construction and analysis of the corresponding fault
tree [17]. A fault tree describes the combinations of failures of individual com-
ponents that may cause higher-level malfunction, e.g., bring the system into a
dangerous state. Such combinations are traditionally called cut sets. Given the
set of all cut sets of the system, a fault tree can be reconstructed. Subsequently,
from the fault tree expressed as a Binary Decision Diagram, it is possible to
compute the reliability of the system from the reliability measures of the com-
ponents, and to synthesize the analytical form of the reliability function [6].

In this paper, we tackle the problem of automatically analyzing the reliabil-
ity of redundancy architectures with parallel replicas and voting. We propose a
general framework that encompasses also redundancy architectures with cyclic
dependencies among components, such as the system from Figure 1, to which

Efficient Analysis of Cyclic Redundancy Architectures via BFP 3

current state-of-the-art approaches [6] are not applicable. The modeling is based
on symbolic transition systems over the quantifier-free theory of linear real arith-
metic and uninterpreted functions (UFLRA). In particular, real numbers are
used to represent the signals of the architecture and multiple instances of the
same uninterpreted function symbol are used to represent component replicas.
The modeling framework is a strict generalization of the combinational approach
proposed in [4,5], that only allows for acyclic architectures.

As the main contribution, we propose an analysis technique based on the
reduction to fault propagation graphs over Boolean structures [7]. We prove that
the reduction is correct: the signal transformation performed by a redundancy
architecture can be equivalently viewed in a Boolean way as fault propagation.

We carry out a systematic experimental evaluation on the set of redundancy
architectures with cyclic dependencies to evaluate scalability of the proposed so-
lution. Moreover, we perform evaluation on acyclic redundancy architectures to
compare the performance against the state-of-the-art approach based on pred-
icate abstraction [5,6], which can be applied only to redundancy architectures
without cycles. The proposed approach proves to be very scalable, being able to
analyze cyclic architectures with thousands of nodes, and is dramatically more
efficient than a direct reduction to model checking of symbolic transition systems
over UFLRA. In the restricted set of acyclic benchmarks, the proposed approach
provides better performance even over the optimized method proposed in [5] and
extended in [6] that adopts a structural form of predicate abstraction to improve
over basic AllSMT [14].

The paper is structured as follows. In Section 2, we present logical preliminar-
ies and basic notions of fault propagation graphs. In Section 3, we describe the
framework of redundancy architectures with cycles. In Section 4, we present the
reduction to fault propagation and prove its correctness. In Section 5, we discuss
the related work. The experiments are presented in Section 6. In Section 7, we
draw some conclusions and discuss some directions for future work.

2 Preliminaries

2.1 General Background

In this section, we explain the basic mathematical conventions that are used in
the paper. We assume that the reader is familiar with standard first-order logic
and the basic ideas of Satisfiability Modulo Theories (smt), as presented e.g.
in [1]. A theory in the smt sense is a pair (Σ, C), where Σ is a first-order signature
and C is a class of models over Σ. We use the standard notions of interpretation,
assignment, model, satisfiability, validity, and logical consequence. We refer to
0-arity predicates as Boolean variables, and to 0-arity uninterpreted functions
as (theory) variables. We denote variables with x, y, . . . , formulas with φ,ψ, . . . ,
and uninterpreted functions with f, g, . . . , possibly with subscripts. We denote
vectors with · (e.g. x), and individual components with subscripts (e.g. xj). We
denote the domain of Booleans with B = {⊤,⊥}. If x1, . . . , xn are variables and

4 M. Bozzano et al.

φ is a formula, we write φ(x1, . . . , xn) to indicate that all the variables occurring
free in φ are in x1, . . . , xn. If φ is a formula without uninterpreted functions and
µ is a function that maps each free variable of φ to a value of the corresponding
sort, [[φ]]µ denotes the result of the evaluation of φ under this assignment. A
Boolean formula is called positive if it does not use other logical connectives
than conjunctions and disjunctions.

In this paper, we shall use the theory of linear real arithmetic (LRA), in
which the numeric constants and the arithmetic and relational operators have
their standard meaning, extended with uninterpreted functions (UF), whose in-
terpretation is not fixed in C, and with voters (V), which are k-ary functions
whose interpretation is the majority function defined as below. For simplicity,
we consider only voters with odd arity as even-arity voters are rarely used in
practice. However, our approach can be extended to support even-arity voters.

Definition 1. The k-ary majority function majority : Rk → R for an odd k > 0
is defined by majority(x) = y if there is y such that y = xj for at least ⌈k/2⌉
distinct j and majority(x) = x1 otherwise.

Given a set of variables x, we denote with x′ the set {x′ | x ∈ x}. A symbolic
transition system S is a triple (x, I(x), T (x, x′)), where x is a set of variables, and
I(x), T (x, x′) are formulae over some signature. An assignment to the variables
in x is a state of S. A state s is initial iff it is a model of I(x), i.e., s |= I(x).
The states s, s′ denote a transition iff s ∪ s′ |= T (x, x′), also written T (s, s′). A
trace is a sequence of states s0, s1, . . . such that s0 is initial and T (si, s

′
i+1) for

all i. We denote traces with π, and with πj the j-th element of π. A state s is
reachable in S iff there exists a trace π such that πi = s for some i.

2.2 Fault Propagation Graphs

In this section we briefly introduce the necessary notions of fault propagation,
and in particular the formalism of symbolic fault propagation graphs. Intuitively,
fault propagation graphs can be used to describe how failures of some compo-
nents of a given system can cause the failure of other components of a system.
In an explicit (hyper)graph representation, components can be represented by
nodes, and dependencies by edges among them, with the meaning that an edge
from component c1 to component c2 states that the failure of c1 can cause
the failure (propagation) of c2. In the symbolic representation adopted here,
we model components as Boolean variables (where ⊥ means “not failed” and ⊤
means “failed”), and express the dependencies as Boolean formulae encoding the
conditions that can lead to the failure of each component. The basic concepts
are formalized in the following definitions. For more information, we refer to [7].

Definition 2 (Fault propagation graph). A symbolic fault propagation graph
(fpg) is a pair (C, canFail), where C is a finite set of system components
and canFail is a function that assigns to each component c a Boolean formula
canFail(c) over the set of variables C.

Efficient Analysis of Cyclic Redundancy Architectures via BFP 5

Definition 3 (Trace of FPG). Let G be a fault propagation graph (C, canFail).
A state of G is a function from C to B. A trace of G is a sequence of states
π = π0π1 . . . ∈ (BC)ω such that all i > 0 and c ∈ C satisfy (i) πi(c) = πi−1(c)
or (ii) πi−1(c) = ⊥ and πi(c) = [[canFail(c)]]πi−1

.

Example 1 ([7]). Consider a system with components control on ground (g),
hydraulic control (h), and electric control (e) such that g can fail if both h
and e have failed, h can fail if e has failed, and e can fail if h has failed. This
system can be modeled by a fault propagation graph ({g,e,h}, canFail), where
canFail(g) = h ∧ e, canFail(h) = e, and canFail(e) = h.

One of the traces of this system is {g 7→ ⊥,h 7→ ⊤,e 7→ ⊥}{g 7→ ⊥,h 7→
⊤,e 7→ ⊤}{g 7→ ⊤,h 7→ ⊤,e 7→ ⊤}ω, where h is failed initially, which causes
failure of e in the second step, and the failures of h and e together cause a failure
of g in the third step.

Fault propagation graphs are often used to identify sets of initial faults that
can lead the system to a dangerous or unwanted state (usually called a top level
event). Such sets of initial faults are called cut sets.

Definition 4 (Cut set). Let G be a fault propagation graph G = (C, canFail)
and φ a positive Boolean formula, called top level event. The assignment cs : C →
B is called a cut set of G for φ if there is a trace π of G that starts in the state cs
and there is some k ≥ 0 such that πk |= φ. A cut set cs is called minimal cut set
if it is minimal with respect to the pointwise ordering of functions BC , i.e., there
is no other cut set cs ′ such that {c ∈ C | cs ′(c) = ⊤} ⊊ {c ∈ C | cs(c) = ⊤}.

For brevity, when talking about cut sets, we often mention only the compo-
nents that are set to ⊤ by the cut set.

Example 2 ([7]). The minimal cut sets of the fpg from Example 1 for the top
level event φ = g are {g}, {h}, and {e}. These three cut sets are witnessed by
the following traces:

1. {g 7→ ⊤,h 7→ ⊥,e 7→ ⊥}ω,
2. {g 7→ ⊥,h 7→ ⊤,e 7→ ⊥}{g 7→ ⊥,h 7→ ⊤,e 7→ ⊤}{g 7→ ⊤,h 7→ ⊤,e 7→ ⊤}ω,
3. {g 7→ ⊥,h 7→ ⊥,e 7→ ⊤}{g 7→ ⊥,h 7→ ⊤,e 7→ ⊤}{g 7→ ⊤,h 7→ ⊤,e 7→ ⊤}ω.

Note that the fpg has also other cut sets, such as {g,e}, {h,e}, and {g,h,e},
which are not minimal.

In the following, we work with fault propagation graphs whose all canFail
formulas are positive. Such fault propagation graphs are called monotone. Note
that the definition of trace ensures that in each trace, if a component c is set to
⊤ in a state πi, it is ⊤ in all the subsequent states πj for j > i. This ensures
that each trace eventually reaches a fixed point. Moreover, before reaching this
fixed point, the trace can contain at most |C| distinct states.

For monotone fpgs, there is an efficient algorithm for minimal cut set enu-
meration [7]. This approach consists in enumerating of the minimal models of a
specific LRA formula, in which theory constraints are used only if the input fpg
contains cycles (and which therefore is purely Boolean for acyclic fpgs).

6 M. Bozzano et al.

3 Cyclic Redundancy Architectures

In this section, we describe the framework adopted to model redundancy ar-
chitectures, in form of a restricted class of symbolic transition systems modulo
UFLRA. We call this restricted class transition systems with uninterpreted func-
tions and voters (UF+V TS).1 This modeling framework is more expressive than
mere smt formulas modulo UFLRA, which were used in the previous works on
analysis of redundancy architectures [6], as it can express architectures that
contain cyclic dependencies among the modules.

Definition 5 (UF+V transition system). A transition system with unin-
terpreted functions and voters is a tuple (VS , Vin, Vinit, Tnext, Tinit), where

– VS is a finite set of real-valued signal variables;
– Vin with VS ∩ Vin = ∅ is a finite set of real-valued input variables;
– Vinit is a finite set of real-valued initial value variables;
– Tnext : VS → Expr is a transition function, where Expr is the set of all

expressions of form f(x1, x2, . . . , xk) for k ≥ 0, xi ∈ (VS ∪Vin), and where f
is either an uninterpreted function symbol of arity k or the function symbol
voterk with an odd k > 0;

– Tinit is an initial value mapping that assigns an initial value variable Tinit(v) ∈
Vinit to each signal v ∈ VS for which Tnext(v) = f(x) for an uninterpreted f .

A UF+V transition system is called well formed if it does not contain cyclic
dependencies among voters, i.e., there is no sequence v1 . . . vn of signal variables
such that v1 = vn and each vi with i > 0 satisfies Tnext(vi) = voterk(x1, . . . , xk)
with xj = vi−1 for some 1 ≤ j ≤ k. For well formed UF+V TS, we can define
voter depth vd : VS ∪ Vin → N as the unique solution to the following set of
equations: vd(in) = 0 for each in ∈ Vin, vd(s) = 0 for each v ∈ VS such that
Tnext(v) = f(x1, x2, . . . , xk), and vd(v) = max{vd(xi) | 1 ≤ i ≤ k} + 1 for each
v ∈ VS such that Tnext(v) = voterk(x1, x2, . . . , xk).

In the rest of the paper, we assume that all UF+V TS are well formed. In the
rest of this section, let us fix an arbitrary well formed UF+V transition system
S = (VS , Vin, Vinit, Tnext, Tinit).

We now give a formal definition of the behavior of the UF+V system in pres-
ence of faults. Intuitively, we are given the set Faults of faulty signal-producing
components of the system, which do not have to behave correctly: a faulty com-
ponent neither has to start in its specified initial value nor respect its transition
function.

Definition 6 (Trace of UF+V TS). A state of a UF+V transition system S
is an arbitrary assignment of real numbers to signal and input variables s : (VS ∪
Vin) → R.
1 Note than although UF+V TS and the related concepts can be defined directly
in terms of UFLRA symbolic transition systems, we chose to make the definition
explicit to simplify the presentation and proofs.

Efficient Analysis of Cyclic Redundancy Architectures via BFP 7

The sequence of states π = π0π1 . . . ∈ (RVS∪Vin)ω is called a trace of the
system S for the fault set Faults ⊆ VS , input stream ι = ι0ι1 . . . ∈ (RVin)ω,
initial value assignment Init : Vinit → R, and interpretation [[]], which to each
uninterpreted function symbol of arity k assigns a function [[f]] : Rk → R, if:

– πi(in) = ιi(in) for all i ≥ 0 and in ∈ Vin.
– For v ∈ VS \ Faults such that Tnext(v) = f(x1, . . . , xk) with an uninterpreted

function symbol f , it is the case that π0(v) = Init(Tinit(v)) and all i > 0
satisfy πi(v) = [[f]](πi−1(x1), . . . , πi−1(xk)).

– For all i ≥ 0 and v ∈ VS \ Faults such that Tnext(v) = voterk(x1, . . . , xk), it
is the case that πi(v) = majority(πi(x1), . . . , πi(xk)).

Traces for the fault set Faults = ∅ are called nominal.

Note that each uninterpreted module needs one time step to compute its
result, while the results of voters are instantaneous. The time delay for modules
allows cyclic dependencies among modules, while no delay for voters gives the
expected semantics to architectures where some replicas of a module are guarded
by a voter and others are not, such as in schemas from Figures 2b and 2c.

Example 3. Consider the example from Figure 1, where the reference system
with 3 modules M1, M2, and M3 is extended with tmr such that the modules
M1 andM2 are replaced by three replicas whose results are combined by a voter.

We can represent the redundancy version of the system as a UF+V TS as
follows. The nominal behavior of the modulesM1,M2, andM3 is represented by
binary uninterpreted functions f1, f2, and f3, respectively. Further, we represent
initial values ofM1,M2,M3 by variables initm1

, initm2
, and initm3

respectively.
Finally, we represent the output of i-th replica of each module Mj by a signal
variable xij and the output of the voter corresponding to the module Mj by a
signal variable xvj .

This gives the UF+V transition system S = (VS , {in1, in2}, Vinit, Tnext, Tinit),
with VS = {x11, x21, x31, xv1, x12, x22, x32, xv2, x13}, Vinit = {initmj

| j ∈ {1, 2, 3}}, and

Tnext(x
i
1) = f1(in1, x

v
2) for 1 ≤ i ≤ 3, Tinit(x

i
1) = initm1 for 1 ≤ i ≤ 3,

Tnext(x
i
2) = f2(in2, x

v
1) for 1 ≤ i ≤ 3, Tinit(x

i
2) = initm2 for 1 ≤ i ≤ 3,

Tnext(x
1
3) = f3(x

v
1, x

v
2), Tinit(x

1
3) = initm3

,

Tnext(x
v
j) = voter3(x

1
j , x

2
j , x

3
j) for j ∈ {1, 2}.

We define the class of redundancy transition systems, where the only pur-
pose of all voters is to recognize and repair outputs of failed components; more
specifically, if all components behave correctly, the voters are not necessary.

Definition 7 (Redundancy UF+V TS). We call the system S a redundancy
UF+V transition system if in all its nominal traces, all inputs of each voter are
always identical. Formally, if π is any nominal trace of S and if v is a variable

for which Tnext(v) = voterk(x), then
∣∣∣{πi(xj) | 1 ≤ j ≤ k}

∣∣∣ = 1 for all i ≥ 0.

8 M. Bozzano et al.

Similarly to fpgs, a cut set is a set of faults that leads to the undesired behavior
of the system. In particular, given a set of signals that are considered as output
signals (or outputs) of the system, a cut set of the given UF+V TS is a set of
faults that can cause an incorrect value of at least one output.

Definition 8 ((Minimal) cut set). A fault set Faults ⊆ VS is called a cut set
of S for a set of output signals Vout ⊆ VS if there exist an input stream, initial
value assignment, and an interpretation such that values of output signals of
some trace π for the fault set Faults differ from the outputs of the nominal trace
πnom with the same input stream, initial values, and interpretation, i.e., there
is c ≥ 0 and o ∈ Vout for which πc(o) ̸= πnom

c (o). A cut set is called minimal
(mcs) if it is minimal in terms of set inclusion.

Since the redundancy UF+V TS form a subclass of UFLRA transition systems,
there is a straightforward procedure for minimal cut set enumeration. As in
the case of combinational systems [6], one can construct a miter system, which
consists of two copies of the architecture: the first is allowed to fail and the second
is constrained to behave nominally. Minimal cut sets can then be obtained by
using a technique based on symbolic model checking [3] to enumerate all minimal
assignments to fault variables under which it is possible to reach some state in
which the outputs of the two copies differ.

4 Reducing Redundancy UF+V TS to Fault Propagation
Graphs

In this section, we show the main result of the paper, which is that minimal
cut set enumeration of redundancy UF+V transition systems can be reduced to
minimal cut set enumeration of Boolean fault propagation graphs, which is more
efficient than mcs enumeration based on miter construction and model checking.

4.1 Reduction

We for each UF+V system S define a corresponding fpg SB . The components
of SB correspond to the signal variables of the original system S. With a slight
abuse of notation, we use the same names for the original real-valued signal
variables of S and the components of SB , although they have different types.
Intuitively, the reduction ensures that each component v of SB can fail if and
only if there is a trace of S in which the value of the signal variable v deviates
from its nominal value.

Definition 9. Let S = (VS , Vin, Vinit, Tnext, Tinit) be a UF+V TS. We define
a corresponding fpg SB = (VS , canFail), where canFail(v) =

∨
v′∈x∩VS

v′ if
Tnext(v) = f(x) and canFail(v) = atLeast⌈k/2⌉ (x ∩ VS) if Tnext(v) = voterk(x),
using the definition atLeastm(X) =

∨
Y⊆X
|Y |=m

∧
y∈Y y.

2

2 Note that there are more efficient and compact encodings for the atLeast con-
straint [18]; we use the most simple one for presentation purposes.

Efficient Analysis of Cyclic Redundancy Architectures via BFP 9

Example 4. Consider the transition system S from Example 3. The correspond-
ing fault propagation graph is SB = ({x11, x21, x31, xv1, x12, x22, x32, xv2, x13}, canFail),
where

canFail(xi1) = xv2 for all 1 ≤ i ≤ 3, canFail(xi2) = xv1 for all 1 ≤ i ≤ 3,

canFail(x13) = xv1 ∨ xv2,
canFail(xv1) = atLeast2 (x

1
1, x

2
1, x

3
1), canFail(xv2) = atLeast2 (x

1
2, x

2
2, x

3
2).

4.2 Correctness

We show that the reduction preserves the cut sets. In the rest of the section, let
S = (VS , Vin, Vinit, Tnext, Tinit) be an arbitrary redundancy UF+V TS, Faults ⊆
VS be an arbitrary fault set, and Vout ⊆ VS be an arbitrary set of output signals.
First, we show that each cut set of S corresponds to a cut set of SB .

Lemma 1. If Faults is a cut set of S for the set of outputs Vout, then cs defined
as cs(v) = ⊤ iff v ∈ Faults is a cut set of SB for the top level event

∨
o∈Vout

o.

Proof. Let Faults be a cut set of S for some trace π for some ι, Init, and [[]].
Let πnom be the corresponding nominal trace. Define the trace πB of SB as
πB
0 = cs and for all i > 0 define πB

i by πB
i (v) = ⊤ if πB

i−1(v) = ⊤ and πB
i (v) =

[[canFail(v)]]πB
i−1

if πB
i−1(v) = ⊥. In other words, πB is the unique trace starting

in cs in which all the components fail as soon as possible. By monotonicity, the
trace πB has a fixed point, i.e., there is n such that πB

n = πB
n′ for all n′ > n.

We show that πB satisfies πB
n (o) = ⊤ for some o ∈ Vout and thus cs is a cut

set for the top level event
∨

o∈Vout
o. To do this, we prove by induction on i and

on the voter depth vd(v)3 that for all v ∈ VS and i ≥ 0, πi(v) ̸= πnom
i (v) implies

πB
n (v) = ⊤. We distinguish three cases:

– If v ∈ Faults, then πB
0 (v) = ⊤. From the definition of πB , this implies that

πB
l (v) = ⊤ for all l ≥ 0. In particular, πB

n (v) = ⊤.
– If v ̸∈ Faults and Tnext(v) = f(x1, . . . , xk), we distinguish two cases:

• If i = 0: since π0(v) ̸= πnom
0 (v), then it must be the case that π0(v) ̸=

Init(Tinit(v)), therefore v ∈ Faults. This is a contradiction.
• If i > 0: then πi(v) ̸= πnom

i (v) by definition implies

[[f]](πi−1(x1), . . . , πi−1(xk)) ̸= [[f]](πnom
i−1 (x1), . . . , π

nom
i−1 (xk))

and hence πi−1(xj) ̸= πnom
i−1 (xj) for some 1 ≤ j ≤ k because [[f]] is a

function. Since πi−1(in) = πnom
i−1 (in) holds for all in ∈ Vin, we know that

xj ∈ VS . Therefore the induction hypothesis implies πB
n (xj) = ⊤ and

thus πB
n+1(v) = ⊤ because πB

n satisfies canFail(v). Since πB
n was chosen

as the fixed point of πB , this implies πB
n (v) = πB

n+1(v) = ⊤.

3 Induction on the voter depth is employed because UF+V transition systems propa-
gate results of voters instantaneously.

10 M. Bozzano et al.

– If v ̸∈ Faults and Tnext(v) = voterk(x1, . . . , xk), then πi(v) ̸= πnom
i (v) for

any i ≥ 0 by definition implies

majority(πi(x1), . . . , πi(xk)) ̸= majority(πnom
i (x1), . . . , π

nom
i (xk)). (1)

Since S is a redundancy TS, all πnom
i (xj) are equal and the disequality (1)

implies that πi(xj) ̸= πnom
i (xj) for at least ⌈k/2⌉ of xj . All these xj are not in

Vin and must therefore be in VS . By definition of voter depth, vd(xj) < vd(v)
for all these xj . Therefore by the induction hypothesis πB

n (xj) = ⊤ for at
least ⌈k/2⌉ of xj and thus πB

n+1(v) = ⊤ because πB
n satisfies canFail(v). This

again implies πB
n (v) = πB

n+1(v) = ⊤ because πB
n is the fixed point of πB .

This finishes the proof: if Faults is a cut set, πc(o) ̸= πnom
c (o) for some c ≥ 0

and o ∈ Vout, and thus πB
n (o) = ⊤. Therefore we know that πB

n |=
∨

o∈Vout
o and

thus cs is a cut set of SB . ⊓⊔

For the converse direction, we for each fault set devise a trace of the UF+V
TS S that propagates all the possible deviations from the nominal value. We call
this trace maximally fault-propagating. In this trace, all signal values are from
the set {0, 1}, all nominal signal values are 0 and become 1 only as a result of
a fault. Moreover, if there is a trace for the given fault set in which a signal
deviates from its nominal value, the value of the corresponding signal in the
maximally fault-propagating will be 1.

Definition 10 (Maximally fault-propagating trace). Let S be a UF+V
TS. Define

– ιi(vin) = 0 for all i ≥ 0, vin ∈ Vin, i.e., ι is a stream of constant zero inputs;
– Init(vinit) = 0 for each vinit ∈ Vinit; and
– [[f]](x1, . . . , xk) = 1−

∏
1≤i≤k(1−xi) for each uninterpreted f , i.e., the output

is 0 if all inputs are 0; it is 1 if at least one input is 1.

The maximally fault-propagating trace of S for a fault set Faults, denoted as πfp,
is the unique trace of S for the above input stream, initial values, interpretation,
and the given fault set that for all i ≥ 0 and v satisfies πfp

i (v) = 1 whenever
v ∈ Faults.

Observe that the trace πfp is monotone, i.e., once a signal gets set to 1, it
stays set to 1 for the rest of the trace. This is formalized by the following lemma,
which can be proven by induction on i, j − i, and voter depth of v.

Lemma 2. Let S be a UF+V TS, Faults a fault set, and πfp the corresponding
maximally fault-propagating trace. Then πfp

i (v) = 1 for each i ≥ 0 and v ∈ VS
implies πfp

j (v) = 1 for all j > i.

We can now show that if a trace of the fpg version SB of a UF+V TS S
triggers the top level event for some initial fault assignment, there is a trace in
the original system S for the corresponding fault set whose output deviates from
the nominal one; namely it is the trace πfp .

Efficient Analysis of Cyclic Redundancy Architectures via BFP 11

Lemma 3. If cs defined as cs(v) = ⊤ iff v ∈ Faults is a cut set of SB for the
top level event

∨
o∈Vout

o, then Faults is a cut set of S for the set of outputs Vout.

Proof. Suppose that the trace πB of SB with the initial state cs satisfies πB
c (o) =

⊤ for some c ≥ 0 and o ∈ Vout. We show that Faults is a cut set of S for the set
of output signals Vout. Let π

fp be the maximally fault-propagating trace of S for
Faults and πnom the corresponding nominal trace.

We show that for each i ≥ 0 and v ∈ VS , the condition πB
i (v) = ⊤ implies

πfp
i (v) ̸= πnom

i (v). We proceed by induction on i:

– For i = 0: If cs = πB
0 (v) = ⊤, then v ∈ Faults and thus πfp

0 (v) ̸= πnom
0 (v)

because πfp
0 (v) = 1 and πnom

0 (v) = 0.
– For i > 0: Assume that πB

i (v) = ⊤. We distinguish four cases:

• If v ∈ Faults then πfp
i (v) = 1 and so πfp

i (v) ̸= πnom
i (v) = 0.

• If πB
i−1(v) = ⊤, then we get that πfp

i−1(v) ̸= πnom
i−1 (v) from the induction

hypothesis, and thus πfp
i (v) ̸= πnom

i (v) by Lemma 2.
• If v ̸∈ Faults, πB

i−1(v) = ⊥, and Tnext(v) = f(x1, . . . , xk), then π
B
i (v) = ⊤

implies that πB
i−1(xj) = ⊤ for at least one xj ∈ VS . From the induction

hypothesis, we get that πfp
i−1(xj) ̸= πnom

i−1 (xj) and since πnom
i−1 (xj) = 0,

we know that πfp
i−1(xj) = 1. By the definition of [[f]] in πfp

i , we know that

also πfp
i (v) = 1, which is not equal to πnom

i (v) = 0.
• If v ̸∈ Faults, πB

i−1(v) = ⊥, and Tnext(v) = voterk(x1, . . . , xk), then
πB
i (v) = ⊤ implies that at least ⌈k/2⌉ of xj ∈ VS satisfy πB

i−1(xj) = ⊤.

From the induction hypothesis we get that πfp
i−1(xj) ̸= πnom

i−1 (xj) for

these xj and since πnom
i−1 (xj) = 0, we know that πfp

i−1(xj) = 1 for at least
⌈k/2⌉ of xj . By the definition of majority function, we know that also

πfp
i−1(v) = 1 and thus, by Lemma 2, also πfp

i (v) = 1 ̸= 0 = πnom
i (v).

Therefore πB
c (o) = ⊤ implies πfp

c (o) ̸= πnom
c (o) and Faults is a cut set of S. ⊓⊔

Theorem 1. For each fault set Faults, the following two claims are equivalent:

1. The set Faults is a cut set of S for the set of output signals Vout.
2. The assignment cs defined as cs(v) = ⊤ iff v ∈ Faults is a cut set of SB for

the top level event
∨

o∈Vout
o.

5 Related Work

Approaches to the analysis of redundant architectures include [6], which ad-
dresses the generation of the reliability function for a class of generic architec-
tures including tree- and dag-like structures. The computation of the reliability
is based on predicate abstraction and bdds. Our work extends and improves
the approach of [6] in several directions. First, it supports cyclic architectures,
to which predicate abstraction as defined in [6] cannot be applied. Second, it
does not require that the redundancy is localized within small blocks (manually

12 M. Bozzano et al.

defined by the user or in a library), to which the predicate abstraction can be
applied. In contrast, our approach applies the abstraction directly on the level of
individual modules and voters. Moreover, the approach of [6] needs to compute
the abstracted versions of the specified blocks upfront by quantifier elimination.
Finally, our approach outperforms the approach of [6].

Other works on redundant architecture analysis are either based on ad-hoc
algorithms [13] which are not fully automated, and require discretization and
additional input data from the user, or use simulation techniques such as Monte
Carlo analysis [15], which do not examine the system behaviors exhaustively.

A classification of fault tolerant architectures is presented in [10]. The clas-
sification is based on three different patterns, namely comparison, voting, and
sparing, that can be composed to define generic and possibly cyclic architectures.
A follow-up work [11] builds upon these patterns and introduces strategies to
evaluate several architectures at once (family-based analysis of redundant ar-
chitectures) by reduction to Discrete Time Markov Chains. Our techniques are
orthogonal, and could be applied on top of the approach proposed in [11].

The concept of maximally fault-propagating trace used to prove Lemma 3 is
similar to the concept of maximally diverse interpretations [8], which can be used
to efficiently reduce a formula in the positive fragment of EUF logic to a sat
formula. Both concepts restrict the interpretations of uninterpreted functions to
a specific subclass, which exhibits all the relevant behaviors.

6 Experimental Evaluation

We have performed an experimental evaluation of the proposed approach for
minimal cut set enumeration in order to answer the following research questions:

RQ1 How does the new approach scale on redundancy architectures with cycles?
RQ2 On redundancy architectures with cycles, how do the run-times compare

against the approach based on the enumeration of minimal cut sets of the
miter system by a model checker?

RQ3 On redundancy architectures without cycles, how do the run-times com-
pare against the approach based on predicate abstraction (pa) and bdd-
based enumeration [6]?

RQ4 On redundancy architectures without cycles, what part of the runtime
difference is caused by the different reduction to a Boolean problem (fpg vs
pa) and what part is caused by a different solving approach of the resulting
Boolean problem (sat-based vs bdd-based)?

6.1 Benchmarks and Setup

To answer these research questions, we used four sets of redundancy systems:

Scalable cyclic systems This benchmark set contains two kinds of bench-
marks. For evaluation on redundancy architectures with a linear number

Efficient Analysis of Cyclic Redundancy Architectures via BFP 13

M1

M2

M3

M4

. . .

. . .

M2k−1

M2k

(a) Ladder.

M1

M2

M3

M4

. . .

. . .

M2k−1

M2k

(b) Radiator.

M1 M2
. . . Mk

(c) Linear.

M1

M2

M3

M4

. . .

. . .

M2k−1

M2k

(d) Rectangular.

Fig. 3: Scalable architectures used in the experimental evaluation.

of cycles, we have generated ladder-shaped (Figure 3a) architectures of all
lengths between 1 and 100. For evaluation on redundancy architectures with
a large number of cycles, we have generated radiator-shaped (Figure 3b) ar-
chitectures of all lengths between 1 and 50. For each of the architectures, we
have generated its three redundant versions by replacing each module by a
tmr block with one to three voters by using schemas from Figures 2b, 2d,
and 2e. This yields systems with 2 · length · (3 + numVoters) signals.

Random cyclic systems We have generated 250 random cyclic redundancy
UF+V systems with 1 to 150 modules of arity between 1 and 3, randomly
generated 1 to 6 replicas of each module, and 1 to 6 voters of arity 3 or 5,
randomly connected to the replicas.

Scalable acyclic systems This benchmark set contains linear-shaped (Fig-
ure 3c) and rectangular-shaped (Figure 3d) architectures of all lengths be-
tween 1 and 200 that were used for evaluation of predicate abstraction tech-
nique [6]. As in the original paper, we have used redundant versions of the
systems with the modules replaced by a tmr block with one to three voters.

Random acyclic systems We have used randomly generated acyclic architec-
tures composed of randomly chosen tmr blocks that were also used in [6].

We have evaluated the following approaches for minimal cut set enumeration:

– For the systems with cycles, we have generated their fpg version as described
in Section 4 and also the UFLRA transition system implementing the miter
construction in the smv format, For enumeration of the minimal cut sets
of the fault propagation graphs, we have used the tool SMT-PGFDS [7]
(denoted as fpg in the experiments); for enumeration of the minimal cut
sets of miter systems, we have used the tool xSAP [2], which internally uses
an algorithm based on parametric IC3 [3] (denoted as ParamIC3).

– For the systems without cycles, we have generated both their fpg version and
the description in the format of the tool OCRA [9] as used in [6]. Although
the fpgs could be solved by the tool SMT-PGFDS and the OCRA systems
can be solved by predicate abstraction, which is implemented in xSAP, and
its bdd-based engine [6], this would not compare only the effect of the re-
duction to the Boolean case, but also a confounding factor of the underlying

14 M. Bozzano et al.

1 2 3

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
0.1

1

10

100

1000
T/O

Size of the architecture

T
im

e
(s

)

Method
FPG
ParamIC3

Fig. 4: Solving time on ladder-shaped benchmarks. Divided according to the
number of voters per one reference module.

1 2 3

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0.1

1

10

100

1000
T/O

Size of the architecture

T
im

e
(s

)

Method
FPG
ParamIC3

Fig. 5: Solving time on radiator-shaped benchmarks. Divided according to the
number of voters per one reference module.

backend (sat-based in SMT-PGFDS and bdd-based in xSAP). To answer
RQ4, we have thus performed more fine-grained analysis as follows.
From each fpg, we generated the corresponding Boolean formula, which
is possible since the graph is acyclic [7]. We also generated the Boolean
formula obtained by predicate abstraction from each OCRA encoding. We
thus obtained two Boolean formulas for each system: one by reduction to
fault propagation (fp), and one by reduction by predicate abstraction (pa).
We have then used the sat-based enumeration algorithm of SMT-PGFDS
and also bdd-based enumeration algorithm of xSAP on both of these Boolean
formulas. This gives 4 combinations: fp-sat, fp-bdd, pa-sat, pa-bdd.

All experiments were executed on a cluster of 9 computational nodes, each
with Intel Xeon CPU X5650 @ 2.67GHz, 12 cpu and 96 GiB of ram. We have
used time limit 1 hour of wall-clock time and memory limit 16 GB for each
benchmark-solver pair. The detailed experimental results can be found at https:
//es-static.fbk.eu/people/mjonas/papers/tacas22 redarchs/.

6.2 Results for Cyclic Benchmarks

The comparison of running times of fpg-based and of model-checking-based ap-
proaches on the scalable cyclic benchmarks is shown in Figures 4 and 5. Figure 4
shows a significant benefit of the technique based on fault propagation on the
ladder-shaped benchmarks; not only that it can enumerate cut sets of all the used
benchmarks, but its run-times are dramatically better. However, as can be seen
on Figure 5, the situation is different on the radiator-shaped benchmarks, which
contain a large number of cycles. Although the performance of technique based

https://es-static.fbk.eu/people/mjonas/papers/tacas22_redarchs/
https://es-static.fbk.eu/people/mjonas/papers/tacas22_redarchs/

Efficient Analysis of Cyclic Redundancy Architectures via BFP 15

1 2 3

linear
rectangular

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0.1

1

10

100

1000
T/O

0.1

1

10

100

1000
T/O

Size of the architecture

T
im

e
(s

) Method
FP−BDD
FP−SAT
PA−BDD
PA−SAT

Fig. 7: Solving time on scalable acyclic benchmarks. Divided by the architecture
and number of voters per one reference module.

on fault propagation is still superior to the model-checking-based technique, it
scales poorly on the systems with 2 and 3 voters per one tmr block. The answer
to RQ1 is thus that the proposed approach scales well if the number of cycles in
the system is not too large; if the number of cycles is large, the technique scales
worse, but nevertheless significantly better than the state-of-the-art technique
based on miter construction and model checking [3].

0.1

1

10

100

1000

T/O

0.1 1 10 100 1000T/O
Time ParamIC3 (s)

T
im

e
F

P
G

 (
s)

Fig. 6: Solving time on
random cyclic bench-
marks.

The run-times on random cyclic benchmarks are
shown in Figure 6. The figure shows that the perfor-
mance of the proposed technique is better by sev-
eral orders of magnitude and can enumerate mini-
mal cut sets of 59 random systems that are out of
reach for the technique based on model checking.
Note that some of the systems are hard for both of
the approaches: both approaches timed out on 66
of the 250 benchmarks. Together with the results
for the ladder-shaped and radiator-shaped systems,
this answers RQ2: the technique proposed in this
paper has significantly better performance than the
state-of-the-art technique based on model checking.

There are two reasons of the observed perfor-
mance difference. First is the reduction of UFLRA
transition system to the Boolean one, which has
been also observed to bring significant benefit on acyclic systems in the case of
predicate abstraction [6]. Second is the underlying mcs-enumeration technique
applied the resulting fpg. This technique reduces the expensive sequential rea-
soning to an enumeration of minimal models of a single smt formula, which can
significantly improve performance [7].

6.3 Results for Acyclic Benchmarks

The comparison of the performance on acyclic scalable benchmarks is shown in
Figure 7. The results are divided according to the method used to reduce the

16 M. Bozzano et al.

0.1

1

10

100

1000

0.1 1 10 100 1000
Time PA−BDD (s)

T
im

e
F

P
−

S
AT

 (
s)

0.1

1

10

100

1000

0.1 1 10 100 1000
Time PA−SAT (s)

T
im

e
F

P
−

S
AT

 (
s)

Fig. 8: Solving time on random acyclic benchmarks.

problem to Boolean case (fp vs. pa) and the technique used to enumerate the
minimal cut sets of the Boolean system (sat vs. bdd). Scatter plots of solving
times on random acyclic benchmarks can be seen on Figure 8.

The results show that the reduction of the problem to fault propagation and
using an off-the-shelf solver for enumeration of minimal cut sets of the resulting
Boolean system (i.e., fp-sat) is clearly superior to the state-of-the-art approach
based on predicate abstraction and bdd-based mcs enumeration (i.e., pa-bdd).
The difference between these two approaches is even several orders of magnitude
on scalable benchmarks and grows with the size of the system and its complexity.
The performance is also significantly better on the random benchmarks. This
answers RQ3 in favor of the technique proposed in this paper.

As for RQ4, Figures 7 and 8 show that both the different reduction technique
(fp vs. pa) and the solving technique (sat vs. bdd) play a role in this differ-
ence. However, the larger part of the runtime difference between the proposed
approach (fp-sat) and the state-of-the-art approach (pa-bdd) [6] is due to bet-
ter performance of sat-based enumeration. This insight is additional interesting
outcome of our our experiments. Nevertheless, for both of the enumeration ap-
proaches, the proposed reduction based on fault propagation provides better
performance than the state-of-the-art reduction by predicate abstraction.

7 Conclusions and Future Work

We have presented a framework for modeling redundancy architectures with
possible cyclic dependencies among the computational modules and we have
developed an efficient approach for enumeration of minimal cut sets of such
architectures. The experimental evaluation has shown that this approach dra-
matically outperforms the state-of-the-art approach based on model checking on
cyclic redundancy architectures and has a better performance than the state-of-
the-art approach based on predicate abstraction on acyclic architectures.

In the future, we plan to extend the approach to a more general class of voters
than majority voters. We also plan to extend the approach to support common
cause analysis for different component faults and possibly to synthesize an opti-
mal distribution of the modules of the architecture between the computational
nodes of a system such as Integrated Modular Avionics.

Efficient Analysis of Cyclic Redundancy Architectures via BFP 17

References

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 825–885. IOS Press (2009). https://doi.org/10.3233/978-1-58603-929-5-825,
https://doi.org/10.3233/978-1-58603-929-5-825

2. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,
C., Micheli, A., Zampedri, G.: The xSAP safety analysis platform. In: Chechik, M.,
Raskin, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems - 22nd International Conference, TACAS 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9636, pp. 533–539. Springer (2016). https://doi.org/10.1007/978-3-662-49674-
9 31, https://doi.org/10.1007/978-3-662-49674-9 31

3. Bozzano, M., Cimatti, A., Griggio, A., Mattarei, C.: Efficient anytime techniques
for model-based safety analysis. In: Kroening, D., Pasareanu, C.S. (eds.) Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 9206, pp. 603–621. Springer (2015). https://doi.org/10.1007/978-3-319-21690-
4 41, https://doi.org/10.1007/978-3-319-21690-4 41

4. Bozzano, M., Cimatti, A., Mattarei, C.: Automated analysis of reliability archi-
tectures. In: 2013 18th International Conference on Engineering of Complex Com-
puter Systems, Singapore, July 17-19, 2013. pp. 198–207. IEEE Computer So-
ciety (2013). https://doi.org/10.1109/ICECCS.2013.37, https://doi.org/10.1109/
ICECCS.2013.37

5. Bozzano, M., Cimatti, A., Mattarei, C.: Efficient analysis of reliability architectures
via predicate abstraction. In: Bertacco, V., Legay, A. (eds.) Hardware and Software:
Verification and Testing - 9th International Haifa Verification Conference, HVC
2013, Haifa, Israel, November 5-7, 2013, Proceedings. Lecture Notes in Computer
Science, vol. 8244, pp. 279–294. Springer (2013). https://doi.org/10.1007/978-3-
319-03077-7 19, https://doi.org/10.1007/978-3-319-03077-7 19

6. Bozzano, M., Cimatti, A., Mattarei, C.: Formal reliability analysis
of redundancy architectures. Formal Aspects Comput. 31(1), 59–94
(2019). https://doi.org/10.1007/s00165-018-0475-1, https://doi.org/10.1007/
s00165-018-0475-1

7. Bozzano, M., Cimatti, A., Pires, A.F., Griggio, A., Jonáš, M., Kimberly, G.: Ef-
ficient SMT-Based Analysis of Failure Propagation. In: Silva, A., Leino, K.R.M.
(eds.) Computer Aided Verification - 33rd International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 12760, pp. 209–230. Springer (2021). https://doi.org/10.1007/978-3-
030-81688-9 10, https://doi.org/10.1007/978-3-030-81688-9 10

8. Bryant, R.E., German, S.M., Velev, M.N.: Exploiting positive equality in a logic
of equality with uninterpreted functions. In: Halbwachs, N., Peled, D.A. (eds.)
Computer Aided Verification, 11th International Conference, CAV ’99, Trento,
Italy, July 6-10, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1633,
pp. 470–482. Springer (1999). https://doi.org/10.1007/3-540-48683-6 40, https://
doi.org/10.1007/3-540-48683-6 40

9. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the re-
finement of temporal contracts. In: Denney, E., Bultan, T., Zeller, A. (eds.)

https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-662-49674-9_31
https://doi.org/10.1007/978-3-662-49674-9_31
https://doi.org/10.1007/978-3-662-49674-9_31
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1109/ICECCS.2013.37
https://doi.org/10.1109/ICECCS.2013.37
https://doi.org/10.1109/ICECCS.2013.37
https://doi.org/10.1007/978-3-319-03077-7_19
https://doi.org/10.1007/978-3-319-03077-7_19
https://doi.org/10.1007/978-3-319-03077-7_19
https://doi.org/10.1007/s00165-018-0475-1
https://doi.org/10.1007/s00165-018-0475-1
https://doi.org/10.1007/s00165-018-0475-1
https://doi.org/10.1007/978-3-030-81688-9_10
https://doi.org/10.1007/978-3-030-81688-9_10
https://doi.org/10.1007/978-3-030-81688-9_10
https://doi.org/10.1007/3-540-48683-6_40
https://doi.org/10.1007/3-540-48683-6_40
https://doi.org/10.1007/3-540-48683-6_40

18 M. Bozzano et al.

2013 28th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013. pp. 702–
705. IEEE (2013). https://doi.org/10.1109/ASE.2013.6693137, https://doi.org/10.
1109/ASE.2013.6693137

10. Ding, K., Morozov, A., Janschek, K.: Classification of hierarchical fault-tolerant
design patterns. In: 15th IEEE Intl Conf on Dependable, Autonomic and Se-
cure Computing, 15th Intl Conf on Pervasive Intelligence and Computing,
3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress, DASC/PiCom/DataCom/CyberSciTech 2017, Orlando,
FL, USA, November 6-10, 2017. pp. 612–619. IEEE Computer Society (2017).
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.108, https://
doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.108

11. Dubslaff, C., Ding, K., Morozov, A., Baier, C., Janschek, K.: Breaking the limits
of redundancy systems analysis. CoRR abs/1912.05364 (2019), http://arxiv.org/
abs/1912.05364

12. Haeussermann, W.: Description and performance of the saturn launch vehi-
cle’s navigation, guidance, and control system. IFAC Proceedings Volumes 3(1),
275–312 (1970). https://doi.org/https://doi.org/10.1016/S1474-6670(17)68785-8,
https://www.sciencedirect.com/science/article/pii/S1474667017687858, 3rd Inter-
national IFAC Conference on Automatic Control in Space, Toulouse, France, March
2-6, 1970

13. Hamamatsu, M., Tsuchiya, T., Kikuno, T.: On the Reliability of Cascaded
TMR Systems. In: Ishikawa, Y., Tang, D., Nakamura, H. (eds.) 16th IEEE
Pacific Rim International Symposium on Dependable Computing, PRDC 2010,
Tokyo, Japan, December 13-15, 2010. pp. 184–190. IEEE Computer Society
(2010). https://doi.org/10.1109/PRDC.2010.45, http://doi.ieeecomputersociety.
org/10.1109/PRDC.2010.45

14. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predicate ab-
straction. In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification, 18th Inter-
national Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4144, pp. 424–437. Springer (2006).
https://doi.org/10.1007/11817963 39, https://doi.org/10.1007/11817963 39

15. Lee, S., Jung, J., Lee, I.: Voting structures for cascaded triple modu-
lar redundant modules. IEICE Electronic Express 4(21), 657–664 (2007).
https://doi.org/10.1587/elex.4.657, http://dx.doi.org/10.1587/elex.4.657

16. Prisaznuk, P.J.: Integrated modular avionics. In: Proceedings of the IEEE 1992
National Aerospace and Electronics Conference@ m NAECON 1992. pp. 39–45.
IEEE (1992)

17. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-
of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62
(2015). https://doi.org/10.1016/j.cosrev.2015.03.001, https://doi.org/10.1016/j.
cosrev.2015.03.001

18. Wynn, E.: A comparison of encodings for cardinality constraints in a SAT solver.
CoRR abs/1810.12975 (2018), http://arxiv.org/abs/1810.12975

19. Yeh, Y.: Triple-triple redundant 777 primary flight computer. In: 1996 IEEE
Aerospace Applications Conference. Proceedings. vol. 1, pp. 293–307 vol.1 (1996).
https://doi.org/10.1109/AERO.1996.495891

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

https://doi.org/10.1109/ASE.2013.6693137
https://doi.org/10.1109/ASE.2013.6693137
https://doi.org/10.1109/ASE.2013.6693137
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.108
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.108
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.108
http://arxiv.org/abs/1912.05364
http://arxiv.org/abs/1912.05364
https://doi.org/https://doi.org/10.1016/S1474-6670(17)68785-8
https://www.sciencedirect.com/science/article/pii/S1474667017687858
https://doi.org/10.1109/PRDC.2010.45
http://doi.ieeecomputersociety.org/10.1109/PRDC.2010.45
http://doi.ieeecomputersociety.org/10.1109/PRDC.2010.45
https://doi.org/10.1007/11817963_39
https://doi.org/10.1007/11817963_39
https://doi.org/10.1587/elex.4.657
http://dx.doi.org/10.1587/elex.4.657
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
http://arxiv.org/abs/1810.12975
https://doi.org/10.1109/AERO.1996.495891
http://creativecommons.org/licenses/by/4.0/

Efficient Analysis of Cyclic Redundancy Architectures via BFP 19

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

	Efficient Analysis of Cyclic Redundancy Architectures via Boolean Fault Propagation

