
Lexical Modeling of ASR Errors for Robust Speech Translation

Giuseppe Martucci1, Mauro Cettolo2, Matteo Negri2, Marco Turchi2

1University of Trento, Italy
2Fondazione Bruno Kessler, Trento, Italy

giuseppe.martucci@studenti.unitn.it, {cettolo,negri,turchi}@fbk.eu

Abstract
Error propagation from automatic speech recognition

(ASR) to machine translation (MT) is a critical issue for the
(still) dominant cascade approach to speech translation. To ro-
bustify MT to ill-formed inputs, we propose a technique to ar-
tificially corrupt clean transcripts so as to emulate noisy auto-
matic transcripts. Our Lexical Noise model relies on estimat-
ing from ASR data: i) the probability distribution of the possi-
ble edit operations applicable to each word, and ii) the proba-
bility distribution of possible lexical substitutes for that word.
Corrupted data generated from these probabilities are paired
with their original clean counterpart for MT adaptation via fine-
tuning. Contrastive experiments on three language pairs led to
three main findings. First, on noisy transcripts, the adapted
models outperform MT systems fine-tuned on synthetic data
corrupted with previous noising techniques, approaching the
upper bound performance obtained by fine-tuning on real ASR
data. Second, the increased robustness does not come at the
cost of performance drops on clean test data. Third, and crucial
from the application standpoint, our approach is domain/ASR-
independent: noising patterns learned from a given ASR system
in a certain domain can be successfully applied to robustify MT
to errors made by other ASR systems in a different domain.
Index Terms: cascade speech translation, MT robustness.

1. Introduction
Speech translation (ST) is the task of automatically converting
utterances in one language into text in another language. This
can be done either with a traditional cascade architecture [1, 2],
or by adopting the more recent direct paradigm [3, 4]. The cas-
cade approach relies on the combination of separate, indepen-
dently trained components – mainly a speech recognition (ASR)
and a machine translation (MT) system. Instead, direct systems
feature ST without recurring to intermediate representations, by
means of a single neural network directly trained on (audio, tex-
tual translation) pairs. Although direct ST is rapidly evolving,1

its advantage in terms of architectural simplicity is undermined
by the scarcity of training corpora to feed data-hungry neural
models. Indeed, when it comes to industrial deployment, the
wealth of ASR and MT training/adaptation data still makes cas-
cade systems the preferable option by far.

Though still dominant, also the cascade approach has lim-
itations. A well-known issue is error propagation [6]: the ad-
verse effect of ASR errors that cannot be recovered by MT com-
ponents unable to handle ill-formed inputs [7, 8, 9, 10]. Early
solutions to this problem moved from loosely-coupled cascade
architectures (with separate, independent components) toward

1The latest International Workshop on Spoken Language Transla-
tion (IWSLT 2020) showed that, in specific evaluation conditions (TED-
derived data, English as source language), direct systems have almost
closed the initially huge performance gap with the cascade ones [5].

a tight ASR-MT integration based on MT systems capable to
decode ASR n-best lists [11], confusion networks [12] or lat-
tices [13]. Later, the attention shifted toward making the MT
models robust to ill-formed ASR output by training them on
data, containing either real or synthetic noise.

In [14], real ASR errors are exploited in two ways: i) di-
rectly, by training the MT on automatically transcribed speech
as source, or ii) indirectly, by means of an intermediate compo-
nent trained to “translate” them into error-free transcripts. The
first solution is data demanding, as it implies running an ASR
system to transcribe a large amount of utterances paired with
their translations, which is typically unavailable. The second
solution involves the additional cost of training an intermedi-
ate correction component. Moreover, both methods are ASR-
specific, since models’ training is informed by system-specific
transcription errors. More recently, [15] proposed an adver-
sarial learning approach that, different from [14], bypasses the
need of data with explicit speech-to-transcription-to-translation
alignments and does not involve additional components. How-
ever, as acknowledged by the authors, also this solution is ASR-
specific and highly dependent on ASR quality.

To overcome this limitation, synthetic errors’ injection has
been explored along different directions. Focusing on homo-
phone noise, ASR outputs have been emulated by means of
phonologically-motivated algorithms [16], pronunciation dic-
tionaries modeling acoustic confusions [17], or random homo-
phones’ replacement [18, 19]. Homophone noise, however, is
only one type of speech recognition error [15] and, according
to [20], brings marginal advantages to neural MT. Closer to our
work, [20] adopts a more general approach for artificial noise
injection on the source side of a parallel training corpus. In-
spired by Levenshtein distance, their generative noise model op-
erates on the basis of a manually-set hyper-parameter establish-
ing the amount of noise to be induced by random word substitu-
tions, insertions and deletions. Substitutions and insertions are
drawn either uniformly from the vocabulary (“Vanilla” model)
or from a unigram distribution (“Unigram” model).2

Though more effective compared to previous solutions, the
approach proposed in [20] still suffers from limitations that
our work aims to overcome. First, it requires a careful cal-
ibration of the type and amount of noise to be induced. In-
stead, the solution here proposed avoids any manual cali-
bration step and the adverse effect of wrong decisions. Sec-
ond, unigram sampling (in principle more linguistically mo-
tivated) underperforms compared to the randomized noise in-
troduced by the Vanilla model, which produces corrupted data
far from being representative of plausible ASR-like noise. In
contrast, the improved generative model here proposed (§2)

2Substitutions based on acoustic conditioning are also tested, but
without observing noticeable improvements. This suggests that homo-
phone noise yields marginal contributions, advocating for efforts along
the lines of [16, 17], which the authors left for future work.
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results in lexical perturbations that are more compatible
with ASR errors, outperforming previous methods with re-
sults that approach the scores obtained by fine tuning the MT
on real (system-specific) ASR data. Also, from the evaluation
standpoint, [20] disregards a key requirement for applying nois-
ing techniques in real working conditions: the portability of
the approach across ASR models and domains. Our evalua-
tion (§3), instead, covers a wider range of testing conditions:
not only in vitro, by measuring improvements when an adapted
MT model is fed either with clean or noisy transcripts, but also
in vivo, by checking the effect of robustifying a state-of-the-
art generic MT system with error patterns learned in a training
setting (ASR, domain) different from the actual evaluation set-
ting. Last but not least, our improvements are obtained with
a very limited amount of training data: even with a few hours
of transcribed speech (the equivalent of a typical ASR test set),
our lexical model outperforms its competitors.

2. Lexical Noise Model
When comparing automatic and manual speech transcripts,
ASR errors occur in the form of spurious insertions, deletions
and substitutions. Our goal is to automatically corrupt a clean
text so that it resembles ASR output. In this section, we: i) pro-
pose a lexical model of ASR errors (§2.1), ii) outline an algo-
rithm using the model to corrupt a clean text (§2.2), and finally
iii) discuss the estimation of all the model’s statistics (§2.3).

2.1. Model Definition

ASR errors can be modeled by the noisy channel, the central
component in the mathematical formulation of a communica-
tion system:3 the corrupted text is the channel output (what
is actually seen), while the correct transcript is its input (what
should be discovered). In a probabilistic framework, given the
ASR output word sequence a = a1 · · · am, the correct tran-
script c = c1 · · · cn can be searched through the decoding pro-
cess that targets the maximization: argmaxc Pr(c|a). By ap-
plying Bayes’ Rule and dropping the constant denominator, we
get the un-normalized posterior: argmaxc Pr(a|c)×Pr(c).
Let us focus on the first factor, Pr(a|c), of the channel model.
Applying the Chain Rule we get:

Pr(a | c) =
∏
j

Pr(aj | a1 · · · aj−1, c)

Assuming that words in a are independent from each other and
that each aj originates from a single correct word, the channel
model reduces to:

Pr(aj | a1 · · · aj−1, c) = Pr(aj | c) = Pr(aj | ci)

In this simplified form, our Lexical Noise model is defined by
a set of conditional distributions, one for each possible correct
word ci, providing the probability of any possible substitute aj
of ci. Note that insertions can be modeled as well, as long as
the distribution Pr(aj |φ) for the empty word φ is given.

2.2. Insertion, Deletion and Substitution Algorithm

An algorithm that changes a correct input sequence c into a by
performing Insertion, Deletion and Substitution (IDS) opera-
tions can be represented by a state-based channel [21]. Figure 1
shows how the algorithm works. For each correct word ci, the

3http://en.wikipedia.org/wiki/Channel capacity

Figure 1: State-based IDS channel.

algorithm can decide to: a) append (i.e. Insert) one or more
spurious words to the so-far generated a according to probabil-
ity pI , b) Delete ci with probability pD , or c) “Transmit” ci
with probability pT = 1 − pI − pD . In this case, ci can be ei-
ther appended as is to a or Substitued by aj , one of its possible
alternatives selected according to some criterion.

In the Lexical Noise model, the selection criterion used for
the Insert and Substitute operations is based on Pr(aj |φ) and
Pr(aj |ci), respectively the lexical conditional distributions of
the empty word (φ) and of all possible correct words (ci). If ci
is unknown (out of vocabulary), all operations remain the same
except for the substitution, for which aj is uniformly sampled
from the vocabulary as in [20].

With different selection criteria, other instantiations of the
Noise model proposed in literature can be defined in terms of
our general state-based IDS channel model by sampling:

• uniformly from the vocabulary: Vanilla Noise [20]
• according to the unigram distribution of words in the vo-

cabulary: Unigram Noise [20]
• based on acoustic similarity(aj , ci) measured, for in-

stance, by the distance of the phonetic transcriptions [17]
or by the character edit distance [20]: Acoustic Noise.

2.3. Model Estimation

Our Lexical Noise model can be estimated on real data. Given
an ASR engine and a benchmark, automatic transcripts’ qual-
ity is commonly evaluated with WER, which is derived from
the Levenshtein distance computed at the word level. First, the
recognized word sequence is aligned to the reference transcript;
then, looking at that alignment, substitutions, deletions, inser-
tions and correct matches are counted. Such a procedure allows
us to build a confusion matrix providing, for each word: i) the
list of possible substitutes with the corresponding counters, ii)
the number of times the word has been deleted, and iii) the num-
ber of times it has been inserted. The Lexical Noise model is
estimated by converting those counts into probabilities.

3. Experiments
Most of the experiments discussed below involve fine-tuning
an existing neural MT model trained on a large amount of data
in one domain using a small amount of data from another do-
main [22]. “In-domain” data are either noisy (actual ASR out-
puts or automatically corrupted text) or clean (i.e. manual) tran-
scripts. Though effective on the new in-domain data supplied
for model adaptation, fine-tuning typically suffers from drastic
performance drops on the general domain ones, unless proper
regularization techniques are adopted [23]. Since the goal of
our fine-tuning stage is to adapt the MT model to ASR errors
preserving its ability to properly translate clean texts, it is cru-
cial to avoid overfitting. We pursue this objective by fine tuning
our MT models with dropout [24] and for only one epoch [23].
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3.1. Data

ST experiments were carried out on the en-it, de-en and fr-en4

sections of Europarl-ST [25] (EP-ST henceforth) and on an in-
house en-it NEWS ST test set. Adaptation in the NEWS experi-
ments was performed on textual parallel data randomly selected
from the OPUS repository.5 Table 1 shows corpora statistics.

Table 1: Stats of the EP-ST and NEWS (tokenized) corpora.
task set time #segs #src w #trg w

EP-ST

en-it trn 79h 29m 29.6k 792.4k 837.5k
tst 2h 55m 1,130 29.1k 30.2k

de-en trn 30h 08m 12.9k 277.3k 321.7k
tst 6h 12m 2,631 59.6k 66.6k

fr-en trn 31h 48m 12.4k 370.0k 342.3k
tst 4h 48m 1,804 53.7k 50.0k

NEWS en-it opus na 4.2M 59.6M 57.9M
tst 58m 2s 196 11.7k 11.3k

3.2. ASR and MT engines

The audio data of each benchmark were automatically tran-
scribed. For EP-ST, we used Hybrid DNN-HMM [26] ASR sys-
tems (asrH henceforth), whose acoustic models are speaker-
independent and wide-band, while the language models are
generic 4-grams adapted to the institutional domain. To evalu-
ate our approach in different conditions, the English audio of the
NEWS test set was transcribed by two different ASR engines:
the same asrH used for the English EP-ST audio (apart from
the use of a generic language model instead of an adapted one),
and an end-to-end (Direct) neural ASR system (asrD) based on
S-Transformer [27]. While the output of the asrH engines is
punctuated and cased, asrD does not provide punctuation nor
casing. ASR performance (%WER) is shown in Table 2.

Table 2: %WER of ASRs either considering all original tokens
(ori) or in case-insensitive no-punctuation condition (ci np).

EP-ST asrH
task set ori ci np

en-it en trn 28.36 19.40
en tst 28.80 20.44

de-en de trn 30.42 22.04
de tst 31.21 22.86

fr-en fr trn 28.62 19.08
fr tst 28.77 19.18

NEWS asrH asrD
task set ori ci np ori ci np
en-it en tst 29.02 18.41 39.00 25.81

Our MT engines are built using ModernMT,6 which is
based on the state-of-the-art Transformer [28] architecture. The
baselines are Big Transformer models (as defined in [28],
≈2.1×108 params) trained on generic domain data, again from
the OPUS repository, unless otherwise stated. MT quality is
measured in terms of BLEU scores [29] computed by means of
SacreBLEU with default signatures.7

3.3. Results

Effectiveness of the Lexical Noise model (in vitro). The
first set of experiments aims at verifying the effectiveness of

4ISO 639-1 language codes
5http://opus.nlpl.eu
6http://github.com/modernmt/modernmt
7case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.14

our Lexical Noise model under controlled conditions. For that
sake, on a standard benchmark, we compare the performance
of various instances of the same MT model, each adapted to
a different type of transcripts. In Table 3, the first two rows
show the BLEU scores of our generic MT system (FBK) and
of Google Translate (GT) on the EP-ST test set. The other
rows refer to the FBK model fine-tuned on the EP-ST train-
ing data, where the source side contains: manual transcripts
(man), manual transcripts concatenated to either ASR tran-
scripts (man+asr) or transcripts synthetically noised by means
of the Lexical (man+lex) or Vanilla [20] (man+van) mod-
els. Results are grouped according to two variants of the test
source sentences to be translated: manual (man) or automatic
transcripts generated by asrH. The scores of FBK man+lex
and FBK man+van are averages of three noising runs. The
main outcomes are:

Table 3: BLEU scores on EP-ST test sets, using either manual
or asrH transcripts as input to MT models fine tuned on dif-
ferently noised data. H and O indicate a statistically significant
drop at p<0.05 and p<0.10 below the value in bold in the same
column; no symbol means no statistically significant difference.
Statistical significance is computed as in [30].

MT model
MT input

man asrH
en-it de-en fr-en en-it de-en fr-en

GT 32.22H 32.91H 40.92H 22.93H 24.98H 30.78H

FBK 34.10H 34.47H 40.52H 24.63H 25.26H 30.92H

FBK man 34.78 37.61 44.00 25.21H 27.87H 33.78H

FBK man+asr 34.38H 37.37 43.68O 26.09 29.32 35.18
FBK man+lex 34.56 37.21O 43.86 26.05 28.88O 34.91
FBK man+van 34.48O 37.19O 43.69 25.44H 28.41H 34.35H

(1) When translating ASR transcripts (asrH columns), fine-
tuning on data corrupted with our Lexical Noise model
(FBK man+lex) allows to consistently outperform the adap-
tation on manual transcripts (FBK man) in all the language set-
tings. The primary goal of any noising technique to robustify
the MT model to ill-formed ASR inputs is thus achieved.
(2) On the same input type, FBK man+lex achieves results that
do not statistically differ from those obtained by MT adaptation
to actual ASR transcripts (FBK man+asr) in two out of three
tasks. In other words, our Lexical Noise model approaches the
upper bound performance obtained by fine tuning on real ASR
data. The Vanilla Noise model (FBK man+van), in contrast,
always underperforms with a significance level of 0.05.
(3) When translating error-free manual transcripts (man
columns), our Lexical model statistically guarantees the same
quality level of the best model (FBK man) in two out of three
tasks. Overall, improved robustness does not come at the cost
of undesired performance drops on clean data.

To summarize: in this first set of experiments the Lexi-
cal Noise model has proved capable of satisfying all the main
requirements of noise models, performing better (most of the
cases) or on par with the closest alternative solution.

Data requirements for model estimation. The second set of
experiments aims at analysing the relation between the amount
of data required to estimate the Lexical Noise model and down-
stream translation performance. Ideally, the less the data needed
to train an effective perturbation model, the better. To let any be-
haviour differences emerge, in these experiments the MT base-
line is a Small Transformer model (≈38×106 params) built
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Figure 2: BLEU scores of translations of en-it EP-ST asrH test
set from various MT models trained on en-it EP-ST data only.

on the EP-ST original training data only.8 Contrastive models
were trained on the concatenation of two instances of the EP-ST
training set: one with the manual transcripts on the source side,
the other with transcripts noised either with actual ASR errors
or with synthetic errors generated by different noise models –
Vanilla, Unigram (§2.2) and our Lexical model. The latter was
estimated on increasing amounts of either EP-ST or NEWS9

data, in order to also quantify the impact of in-/out-of-domain
noise model estimation with respect to the translation domain.
Figure 2 plots all the curves. Each point of the two “lex” curves
is the average of three noising runs. The main outcomes are:
(4) With very few data for its estimation, the Lexical model be-
haves similarly to Vanilla and Unigram models, as expected.
By enriching the training set, however, it performs increasingly
better: 10k segments allow for estimating the model at its best,
approaching the results obtained by using real ASR errors.
(5) The Lexical model estimation is domain independent given
that, with the same number of segments used for training, the
noise models built on in-domain (man+lexEP-ST) and out-
of-domain data (man+lexNews) perform the same.
(6) Vanilla and Unigram models achieve similar MT perfor-
mance, which is slightly better for the former as shown in [20];
this supports our choice to compare the Lexical model mostly
to the Vanilla model, instead of the Unigram one.

In brief, these experiments have shown that the Lexical
model starts to be effective even if trained on out-of-domain
data, of size equivalent to that of a typical ASR test set (here,
two hours), and that it quickly reaches its best performance.
Effectiveness of the Lexical Noise model (in vivo). The third
set of experiments targets the challenging application scenario
where in-domain audio data (and, in turn, their automatic tran-
scripts) are not available to directly train an emulator of ASR
errors. In this scenario, we aim at assessing whether an MT sys-
tem can be adapted with artificial noise introduced in in-domain
parallel data by a Lexical Noise model trained on out-of-domain
audio data. Table 4 shows the BLEU scores (again, averaged
over three noising runs) obtained on the en-it NEWS test set by
fine-tuning the FBK model on (in-domain) NEWS training data
noised either by the Lexical model trained on (out-of-domain)

8The motivation for this simplified scenario is that the MT models
described in §3.2 achieve highly competitive results (see row FBK man
in Table 3) that reduce the room for improving via adaptation. Tiny
models trained with less data, instead, are more suitable to make the
actual contribution of different adaptation techniques visible.

9To make this experiment more informative, we added to the NEWS
test set of Table 1 another hour of English audio in the NEWS domain,
which was manually transcribed.

Table 4: BLEU scores on en-it NEWS test set, using either man-
ual or ASR transcripts as input, with our FBK MT model fine
tuned on different amounts of and differently noised data.

man asrH asrD
GT 40.07 26.09 19.83

FBK 38.99 24.71 18.67
fine-tun. FBK lexical FBK vanilla

#segs man asrH asrD man asrH asrD
5k 38.99 24.99 19.24 38.37 23.42 16.57
50k 39.05 25.72 20.62 39.26 24.88 19.16
100k 39.10 25.94 21.03 39.24 25.07 19.71
500k 38.77 26.66 21.55 39.44 25.42 20.51
2M 38.92 27.04 21.60 39.53 25.90 20.48
4M 39.10 26.98 21.86 39.81 25.53 20.57

EP-ST audio data or by the Vanilla model. Different from the
first round of experiments (Table 3), here the fine-tuning is done
only for making the MT models robust to ASR errors, not for
domain shifting too, given that the domain of the original MT
model and of the test set is the same (NEWS): this is why fine-
tuning is performed only on noised data, ignoring the original
correct text. The main outcomes are:
(7) Both Lexical and Vanilla models allow to make MT models
more robust to ASR errors; the robustness is greater the more
noised data for fine-tuning are used, although from a certain
point on performance seems to reach a plateau.
(8) On both ASR transcripts, the Lexical model consistently
outperforms the Vanilla model; their best performance on asrH
and asrD differs by 1.14 and 1.29 absolute BLEU points.
(9) Despite the original MT model (FBK) performs worse than
GT by 1.38 and 1.16 BLEU points when translating asrH and
asrD transcripts, the Lexical model does not only allow to fill
the gap but even to outperform GT by about 1 (27.04 vs. 26.09)
and 2 (21.86 vs. 19.83) points on the two automatic transcripts.
(10) The adaptation to data generated by the Lexical model does
not degrade the quality of the original MT model in the transla-
tion of clean manual transcripts.

To recap: this final set of experiments shows that a Lexical
model trained on errors made in another domain (EP-ST) by a
different ASR has been capable to robustify a state-of-the-art
generic MT better than the Vanilla approach, while preserving
the original translation quality on error-free transcripts.

4. Conclusions
Current solutions to the error propagation problem in cascade
ST focus on robustifying the MT component via adaptation to
real ASR errors (costly and not always available) or synthetic
material emulating them. Synthetic noising techniques should
satisfy three key requirements. The first one is to produce use-
ful corrupted text with agile and scalable solutions that are not
too demanding in terms of training data. Second, the gener-
ated noise should not affect MT quality in presence of error-free
transcripts. Third, to avoid the proliferation of system-specific
noising components in the long run, the underlying approach
should be general enough to be domain- and ASR indepen-
dent. With an eye at these three requirements, the Lexical Noise
model proposed in this paper achieves coherent results on three
language pairs, outperforming previous solutions.
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