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Critical behavior in interdependent spatial
spreading processes with distinct characteristic
time scales
Piergiorgio Castioni 1,2✉, Riccardo Gallotti 2 & Manlio De Domenico2

The spread of an infectious disease is well approximated by metapopulation networks con-

nected by human mobility flow and upon which an epidemiological model is defined. In order

to account for travel restrictions or cancellation we introduce a model with a parameter that

explicitly indicates the ratio between the time scales of the intervening processes. We study

the critical properties of the epidemic process and its dependence on such a parameter. We

find that the critical threshold separating the absorbing state from the active state depends

on the scale parameter and exhibits a critical behavior itself: a metacritical point – a critical

value in the curve of critical points – reflected in the behavior of the attack rate measured for

a wide range of empirical metapopulation systems. Our results have potential policy impli-

cations, since they establish a non-trivial critical behavior between temporal scales of

reaction (epidemic spread) and diffusion (human mobility) processes.
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The spatio-temporal spread of infectious diseases is inher-
ently interdependent with human behavior1–4. On the one
hand, individuals move between spatial patches, effectively

creating human flows through which pathogens travels from one
place to another. On the other hand, social dynamics can favor or
hinder potential transmission channels: a typical example for the
latter relies on risk perception and spread of awareness3,5–7,
determining the choice to take individual actions—such as social
distancing and wearing masks—or mid-scale non-pharmaceutical
interventions—such as school or workplace closure and house-
hold quarantine—and have the direct effect of reducing the
probability that a pathogen is transmitted from one infectious
individual to susceptible ones in their social neighborhood.
Convincing evidence for the role of human behavior in the
spreading of several infectious diseases has been reported in the
last decades for Foot-and-mouth disease8, Influenza and its
strains9–13, SARS14,15, Ebola16, Dengue17,18, Zika19 and, very
recently, for COVID-1920–24.

Consequently, a huge effort has been devoted to understand
the fundamental dynamical mechanisms where it is possible to
take action through policy in order to drive a system subjected to
an ongoing epidemics toward a controlled state, rather than an
uncontrolled one. A standard approach is to coarse-grain the
system under investigation in terms of spatial patches, named
metapopulations, which account for groups of individuals loca-
lized at a given geographic scale. Metapopulations can be thought
as nodes of a complex network of spatial patches, where links
encode human flows from one place to another and are respon-
sible for between-patch transmission25. In fact, a metapopulation
can be one neighborhood within a city26,27, a city28,29, a sub-
national region or higher scales30–34. Models for human mobility
can range from Markov chains encoding standard diffusion35 to
more sophisticated dynamics encoding higher-order
memory36,37: they are often encoded into origin-destination
(OD) matrices which are later encoded into the essential diffusive
part in the dynamical equations that describe the spatio-temporal
evolution of epidemics in terms of reaction-diffusion processes.

However, quite often those models assume that an epidemic
unfolds slower than the average time people need to move around38.
This assumption, known as separation of scale approximation, is
verified in practice, since the incubation period and the average
duration of many diseases is of the order of days, which is much
longer than the typical time scale of human movements, ranging
from about 30min for urban trips to 8 h for interurban ones39,40.
Nevertheless, there are specific scenarios which can alter the typical
time scales of the intervening dynamical processes, e.g., non-
pharmaceutical interventions employed for disease containment can
dramatically change the time scales of social dynamics. Specifically,
changes in human mobility can be due to extraordinary travel
restrictions, cancellations or to the effects of other restrictions such as
school and workplace closure or delayed access to point of interests,
from restaurants and gyms to shopping malls and museums, as
happened during the COVID-19 pandemic41–44.

In this work, we propose a model able to cope with this sce-
narios by explicitly accounting for the existence of two distinct
time scales, each one characterizing the intervening reaction and
diffusion processes. The time-scale separation is therefore enco-
ded into a parameter ϵ, which is defined in terms of the ratio
between the diffusion and reaction time scales. This parameter
allows us to tune the behavior of a system between two extremal
scenarios—such as reaction faster diffusion (ϵ > 1, Fig. 1a) and
diffusion faster than reaction (ϵ < 1, Fig. 1b)—and all the inter-
mediate ones. For simplicity, in the following we will refer to this
model as the ϵ–model. To allow for an analytical treatment of the

problem, we focus our attention on the emblematic Susceptible-
Infected-Recovered (SIR) epidemic model for a metapopulation
network, where particles flow at each time step according to
transition rules encoded by empirical human flows. Using mean-
field approximations and perturbative analysis, we find an ana-
lytic expression for the basic reproduction number R0(ϵ), which
indicates if the epidemics will reach a finite fraction of the
population (R0(ϵ) > 1) or to die out (R0(ϵ) < 1) in the stationary
state, effectively separating the active state from the absorbing
state, respectively. We then find that the co-evolution of reaction
and diffusion on different time scales reveals the existence of a
phase transition characterizing the behavior of the critical
threshold R0(ϵ) as a function of the parameter ϵ: the value ϵ⋆

separates the regime where R0(ϵ) is constant (ϵ < ϵ⋆) from the
regime where it grows monotonically (ϵ > ϵ⋆). Note that for this
behavior to be observed it is required that transmission rates are
distributed among nodes in a nonuniform way. We identify a
quantity Rmin

0 that parametrizes such nonuniform distributions so
that the point ðRmin

0 ; ϵÞ ¼ ð1; ϵ?Þ is a metacritical point, which
separates all epidemic outbreaks between certain or possible
based on the separation of time scales, the infectiousness dis-
tribution and the topology of the network.

Results and discussion
Modeling of epidemics through multiscale reaction-diffusion
processes. Let us consider the scenario of M geographical patches
where individuals move from patch i to patch j (i, j= 1, 2,…,M)
with probability rate Pij, encoding the entries of the corresponding
mobility matrix P. Let us also consider a standard SIR model for
the spreading of an infectious disease, subjected to the conditions
Si(t)+ Ii(t)+ Ri(t)=Ni(t), where Si(t), Ii(t), and Ri(t) are the
number of susceptible, infected and recovered agents in the i-th
patch at time t, while Ni(t) is the overall population of the i-th patch
at time t, with ∑iNi=N the total population, assumed to be con-
stant over time. The variation of the number of infected individuals
in each patch due to the epidemic spreading is given by

ΔI epii ðtÞ ¼ βiSiðtÞ
IiðtÞ
NiðtÞ

� μIiðtÞ
� �

Δtepi ð1Þ

where βi encodes the transmission rate in patch i for a commu-
nicable disease with empirical recovery rate given by μ. The pos-
sibility of having patch-dependent transmission rates is plausible for
a metapopulation network where each spatial patch is characterized
by a population with socioeconomic or clinical differences, such as
average age or income. During the COVID-19 pandemic, for
instance, such differences were reflected in the variance of infection
fatality rates45.

If the population is allowed to move among patches according
to the mobility matrix, the variation due to diffusion is given by

ΔImob
i ðtÞ ¼ ∑

M

j¼1
PjiIjðtÞ � ∑

M

j¼1
PijIiðtÞ

� �
Δtmob ð2Þ

for infected individuals. Since we are working under the
assumption that the epidemiological state of an agent does not
affect their diffusive behavior, the equations for susceptible and
recovered individuals have the exact same form. The time scales
Δtepi and Δtmob should be interpreted as the minimum time
necessary to have a certain small variation in the number of
infected individuals, because of the epidemic process or the
mobility one, respectively.

Usually, those two distinct dynamics happen at the same time
but, in principle, the corresponding time scales of epidemics
spreading and mobility dynamics are not necessarily the same.
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This richness of dynamic scenarios can be encoded into a tunable
parameter ϵ that slows down or speeds up diffusion with respect
to epidemic spreading. We define it as the ratio ϵ= Δtmob/Δtepi
between the two time scales, so that the differential equations for
the model become

dIiðtÞ
dt

¼ βiSiðtÞ
IiðtÞ
NiðtÞ

� μIiðtÞ

þ 1
ϵ

∑
M

j¼1
PjiIjðtÞ � ∑

M

j¼1
PijIiðtÞ

� �
:

ð3Þ

see Methods for a more explicit derivation of this equation. In the
remaining of this paper, we will refer to this model as the ϵ-
model, since the presence of the ϵ parameter, characterizing the
interplay between diffusive and reactive time scales, is its most
distinctive feature. At this point, it is worth remarking that we can
redefine both P and ϵ without loss of generality such that
∑M

j¼1 Pij ¼ 1 and all the information on the time scale of the
mobility lies in 1/ϵ. The reason for doing this will become clear in
the next section.

Note that having a parameter that multiplies the mobility term
in a metapopulation model is not uncommon29,35. In these cases
such a parameter indicates the fraction of people that move
between patches in a given time step. This is exactly equivalent to
our interpretation of ϵ as the ratio between the time scales of the
two processes of reaction and diffusion.

Calculation of the R0. In a simple SIR model without spatial
structure, where every agent interacts with every other agent and
there is only one transmission rate β for all spatial patches, it can
be shown that the basic reproduction number is simply R0= β/μ.
However, in our framework we assume that there is a βi for each
patch i and we expect to have some dependence also on the
mobility matrix and on ϵ. To this aim, we use the next-generation

matrix formalism proposed by van den Driessche et al.46 to cal-
culate the critical threshold R0(ϵ).

First, it is convenient to rewrite Eq. (3) in terms of the
concentration of infectious and susceptible individuals, indicated
respectively as ρi(t)= Ii(t)/Ni(t) and σi(t)= Si(t)/Ni(t). For
simplicity, it is also useful to write the differential equation in
matrix form as

_ρðtÞ ¼ BσðtÞ � ρðtÞ � μρðtÞ � 1
ϵ
L>ρðtÞ; ð4Þ

where L> ¼ I �P> and B ¼ diag ðβ1; ¼ ; βnÞ. Let us consider
the infection-free steady state, i.e., the case right above the critical
point, meaning that there is a negligible fraction of infected
individuals (σi= 1, ∀i). The resulting system of equations
reduces to

_ρðtÞ ¼ JρðtÞ; ð5Þ
where J ¼ B� μI � ϵ�1L> is the Jacobian matrix, whose
analysis allows one to gain insights about the linear stability of
the original system dynamics. By decomposing the matrix into
J ¼ 1

ϵ ðF � VÞ, it is possible to demonstrate that the highest
eigenvalue of the so-called next-generation matrix K= FV−1 is in
fact the basic reproduction number R046,47. In our case F ¼ ϵB
and V ¼ ϵμI þL>, so the matrix K is

K ¼ ϵB ϵμI þL>� ��1
: ð6Þ

However, solving the eigenvalue problem for this M ×M
matrix is, in general, a very complicated task and tells you very
little about the general dependences of K on the parameters of the
problem. To gain some insights, we look for approximated
solutions in the extreme cases in which mobility is either much
slower or much faster than the epidemic, in order to characterize
the behavior of the system from an analytical perspective.

Fig. 1 Schematic illustration of reaction-diffusion processes characterized by different time scales as captured by our model. The agents are
represented with dots whose colors indicate their state with respect to the disease. The big circles represent different spatial patches and the probability of
going from patch j to i is represented with the black arrows and encoded in the matrix element P ij. The agents can either move around in the network, and
in that case they are represented along the arrows outside the spatial patches, or stay where they are and undergo one of two epidemiological “reactionsˮ:
infection or recovery. The infections are represented with the transformations with red arrows, while for the recoveries we used blue arrows. Finally
according to the time scale separation parameter ϵ we can distinguish two regimes of this model: in (a) ϵ > 1, so reaction events are more frequent that
diffusive ones while in (b) ϵ < 1, so the opposite is true.
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Diffusion slower than reaction. In this first case we have that
ϵ≫ 1, so we can use perturbation theory (PT) using ϵ−1 as our
parameter and writing the next-generation as K ¼ K0 þ K 0=ϵ,
where

K0 ¼
B

μ
and K 0 ¼ �B

μ

L>

μ
I þL>

ϵμ

� ��1

: ð7Þ

The eigenvalues and eigenvectors of the unperturbed part are
respectively βi/μ and the canonical basis {ei}. The resulting
spectral radius, quantifying R0, is given by

R0 ¼
ϵβmax

μϵþ ð1� Pmax;maxÞ
þ μϵ2

ðμϵþ 1Þ4 ∑
j≠max

βmaxβj
βmax � βj

´
P

I þP=ð1þ μϵÞ

� �
max;j

P

I þP=ð1þ μϵÞ

� �
j;max

þ Oðϵ�3Þ;

ð8Þ
where the index max indicates the patch with the highest
transmission rate (see Methods). Equation (8) highlights that
when there is no mobility at all (ϵ→∞) one obtains R0 ¼ βmax=μ:
i.e., the condition for the epidemic to have a finite-size outbreak is
for that to happen at least in one spatial patch, as expected. It
should be noted that in this case we have a strong dependence of
the systems on the initial distribution of infected individuals,
since the epidemic cannot grow unless the patches with βi > μ
have at least one infected individual at time t= 0. Furthermore,
notice how the mobility network P only appears in the second
order term and therefore its effects become more and more
negligible as ϵ increases.

Diffusion faster than reaction. When the mobility is much faster
than the epidemic (meaning that ϵ≪ 1) we cannot use the same
approach, since for ϵ→ 0 the next-generation matrix becomes ill-
defined as it is defined in terms of the inverse of the Laplacian
matrix L, which is singular. Nevertheless, one can solve this
problem by using a corollary to Perron–Frobenious theorem
which states that if one has a non-negative irreducible matrix,
such as K, then its highest eigenvalue corresponds to the spectral
radius ρ(K) and the following inequalities hold:

min
i

∑
j
Kij ≤ ρðKÞ≤ max

i
∑
j
Kij: ð9Þ

It is possible to show (see Methods) that in the limit ϵ→ 0 the
next-generation matrix can be found exactly, leading to

Rmin
0 ¼ ∑

j

βj
μ

sj
∑ksk

: ð10Þ

A closer inspection of the above results reveals that in this
scenario R0 is the weighted average of the local basic reproduction
numbers—defined by βi/μ in the case of isolated spatial patches—
where the i-th weight is given by the relative strength si of node i,
i.e., the sum of all the flows involving that node, with respect to
the overall human flow. It is straightforward to verify that the
above relation reduce to the expected R0= β/μ when βi= β for all
spatial patches. It is also worth noticing that Eq. (10) tells us that
Rmin
0 does not depend on degree correlations or on topology in

general and, as a result, as ϵ vanishes, every network with the
same strength sequence leads exactly to the same result. That also
means that, in the case of unweighted metapopulation networks,
the configuration model constitutes a good approximation with
respect to R0 when ϵ→ 0. The notation Rmin

0 encodes the fact that,
since R0(ϵ) is a monotonically increasing function, the basic
reproduction number for ϵ→ 0 corresponds to the lower bound
(see Fig. 2).

Diffusion comparable with reaction. It is plausible to wonder
about what happens in the intermediate regime ϵ≃ 1. Figure 2
shows that R0(ϵ) can be written as the piecewise-definite function

f ðϵÞ ¼
Rmin
0 for ϵ< ϵ?

ðβmax�bÞ
μ

ϵ
ϵþa þ b

μ for ϵ> ϵ?

(
ð11Þ

where Rmin
0 is given by Eq. (10) and a, b and ϵ⋆ are three para-

meters, one of which is fixed by the continuity condition of f(ϵ) in
ϵ= ϵ⋆. We can then safely assess that R0(ϵ) displays itself a phase
transition, and as such it is possible to distinguish between the
ordered and disordered phase just by looking at the initial con-
dition in the number of infectious individuals in each patch. For
instance, for ϵ < ϵ⋆ the diffusion is so fast compared to the
reaction that no matter what the initial conditions are in the long-
time limit the number of infected individuals will be uniformly
spread among all the patches; therefore this phase is ordered or,
equivalently, invariant under the choice of initial conditions.
Conversely, when ϵ > ϵ⋆ the long-time limit will strongly depend

Fig. 2 Basic reproduction number R0 of the whole metapopulation
network as a function of the time scale ratio ϵ. The two panels show the
behavior of a (a) Erdős-Rényi and a (b) Barabási–Albert metapopulation
network, models for homogeneous and scale-free connectivity of spatial
patches, respectively. The solid gray curve indicates the values of R0 found
numerically by solving the eigenvalue problem for the next-generation
matrix K, whereas the red line corresponds to the value analytically derived
in Eq. (8) by using perturbation theory. The approximation is excellent for
the homogeneous connectivity, whereas in the case of the heterogenous
one it works only for ϵ > 1. The vertical dashed violet line indicates the
position of the metacritical point ϵ⋆ obtained analytically, that separates the
regime in which R0 stays constant and equal to its minimum value Rmin

0 (see
Eq. (10)) from the regime in which it start growing. Finally the horizontal
dotted black lines correspond to the lower bound on R0, which in this case
is Rmin

0 ¼ 1, and the upper bound βmax=μ ¼ 2, where μ= 2 is the recovery
rate and βmax ¼ 4 is the maximum transmission rate among those in the
network.
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on initial conditions, therefore the aforementioned invariance is
broken and the phase is disordered. This behavior may be seen as
analogous to the so called “global invasion thresholdˮ48, which
indicates the condition under which the epidemic goes from
being localized only in a few geographical patches to invade the
whole network.

To estimate the location of the critical point in the parameter
space we can either obtain it from fitting Eq. (11)—as we have
done for drawing the dotted lines in Fig. 2—or look for the
interception between the sigmoid in Eq. (8) and the horizontal
line R0 ¼ Rmin

0 . In particular for Rmin
0 ¼ 1 and its corresponding

ϵ⋆ we get a metacritical point: i.e., a value of the critical threshold
that divides absorbing states from active ones (see Fig. 3). In this
case we have ϵ? ¼ 1=ðβmax � μÞ, obtained by intersecting the line
R0= 1 with the first term in Eq. (8) while assuming that there are
no self-loops. We obtain a really good estimate for synthetic
mobility networks characterized by homogeneous connectivity
and our approximation still works as an upper bound for the ones
characterized by heterogeneous connectivity. This is true because,
as shown in Fig. 2, in heterogeneous networks the second order
term in PT starts being relevant, and since this term can only be
positive the net effect is to lowering the metacritical point.
Therefore, we can conclude that the maximum possible value for
R0 should be the one obtained only with the first order in PT, that
is very close to that of homogeneous networks (see again Fig. 2).
Finally, note that if Eq. (11) is correct (as it is for homogeneous
networks) then the critical exponent ν given by R0 � ðϵ� ϵ?Þν for
ϵ→ ϵ⋆, is equal to 1.

Metacritical point observed in real human flows. We now apply
our theoretical framework to analyze empirical metapopulation
networks, where nodes are either counties of a U.S. state or other
types of administrative regions in other countries, and where
links are observed human mobility flows.

We use a series of datasets describing the anonymized mobility
flows in different areas of the world, aggregated at administrative
levels. All sources originated by the usage of mobile phones: this
kind of passively collected data has been successfully validated for
epidemics modeling49 and became standard in recent years. The
flows for France (FRA), Spain (ESP) and Portugal (PRT)49, Ivory
Coast (CIT)7 and Turkey (TUR)33 are reconstructed from the
Call Detail Records, the billing dataset held by mobile phone
companies. The flows for USA (Florida and Colorado) are
estimated on the base of data kindly provided by Cuebiq, a
location intelligence and measurement platform that collects
privacy enhanced GPS trajectories from mobile apps users who
have opted-in to provide access to their aggregated location data
anonymously. Also those of Italy (ITA) are derived from Cuebiq
data, and are obtained from a published dataset50. These flows
have been used for assessing change in mobility during the
COVID-19 pandemics in 2020.51,52, but for our purposes we
analyze here only a static snapshot of the mobility in the area. See
Fig. 4(a), (b) and (c) for an illustration of the mobility flows in
Italy, Florida, and Colorado. For these datasets, the population of
each node is obtained from census data.

The flows for Senegal (SEN), Nigeria (NGA), Zambia (ZMB),
China (CHN), India (IND), Mexico (MEX), Brazil (BRA) and the
Philippines (PHL) are publicly available53 and have been
reconstructed using an extended gravity model including several
geographical and socioeconomic factors. See Fig. 4(d) and (e) for
an illustration of these reconstructed flows for Zambia and The
Philippines. In this case, the population at each site is assumed to
be proportional to the total out-bound flow, upscaled so that the
sum of the node populations matches the country population.

In order to verify the validity of our theoretical framework
when dealing with real-world mobility flows, we assign to each
node a transmission rate βi which is proportional to its
population. We choose to do this because it is reasonable to
think that more populated areas are linked to a larger number of
interaction and therefore to a higher risk of transmission.
However we cannot expect this mechanism to hold for arbitrarily
large populations, since the number of contact each person can
have has a limit that does not depend on the size of the
population itself (we got the idea behind this from54,55). For this
reason we set the maximum value to βmax ¼ 2μ. In addition we
set Rmin

0 ¼ 0:5 to be sure that we are in the regime where a
transition happens for some value of ϵ (see Fig. 3). Each
simulation was run until the variation in the number of recovered
individuals after 20 days was 0.01% of the total population (note
that for China and India this fraction was lowered to 0.0001% due
to the large number of people living inside each node). For each
of simulation, initial conditions were set to ten infected
individuals per node. Finally the heterogeneity of every weighted
network was calculated using the Gini coefficient G of the
strength distribution of the network.

The results are shown in Fig. 5, highlighting the behavior of the
attack rate at different stages of the epidemic, for various real-
word mobility networks. Here with epidemic stages we simply
mean the status reached by the epidemic after different times,
measured in multiples of the time necessary to reach the
maximum number of infected (or infectious peak). We chose to
do this so that, even if the absolute duration of each simulation
had varied, we would have been at the same point (or “stageˮ) of
the evolution of the epidemics. The results display, qualitatively, a
similar behavior: for low values of ϵ the attack rate is
approximately zero, meaning that there is no epidemic outbreak
at all, while for larger ϵ this number grows rapidly, confirming the
existence of a phase transition in the curve of critical thresholds
R0(ϵ). Notice that such a transition point ϵ⋆ always remains

Fig. 3 Phase diagram representing the attack rate in simulations
parameterized by ϵ and Rmin

0 . We recall that ϵ is the parameter that
indicates the ratio between the time scale of the mobility and that of the
epidemic, while Rmin

0 is the weighted average of the local basic reproduction
numbers—defined in the case of isolated spatial patches—using the
patches' strengths as weights (Eq. (10)). The dashed lines correspond to
Rmin
0 ¼ 1 (blue) and the correspondent critical value of the parameter ϵ= ϵ⋆

(violet), while the blue triangle indicates the position of the metacritical
point. An Erdős–Rényi network with 500 nodes and wiring probability p=
0.04 is considered.
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approximately below the upper bound 1=ðβmax � μÞ, which is
equal to 10 in this case. Finally, when ϵ is very large there is a
drop in the attack rate, which happens because inter-node travels
are so limited that the epidemic can only spread inside the nodes
where βi > μ, quickly reaching the stationary state.

Note that here, when taking the long-time limit or stationary
state, we are actually referring to the stage in which the epidemic
has slow down so much that variations are extremely small.
Curves in Fig. 5 weakly depend on such a condition, even though
their qualitative shape would remain the same: an abrupt growth
for low values of ϵ followed by a sharp drop for high values of ϵ.

Finally, from a quantitative perspective, the different behavior
of the attack rate across countries depends mainly on the
population distribution at their sites and on the degree
distribution of the corresponding metapopulation networks. In
particular, countries with a more homogeneous degree distribu-
tion (such as Zambia or Philippines) tend to have a transition
point ϵ⋆ closer to the upper bound 1=ðβmax � μÞ, while for
heterogeneous networks (such as Portugal or Turkey) this value is
lower, as confirmed by Fig. 2. Then, as ϵ increases, the population
distribution becomes more and more important, since in this
limit people cannot move so much and they are bound to stay in
their original patch. In this case, the outbreak will spread only in
those sites where the local R0 is larger than one. Since we have
defined transition rates to be proportional to the local population,

the nodes with the highest βi are also the most populated ones.
Therefore, if we have a network with a very heavy-tailed
population distributions (such as Turkey) the attack rate in the
limit ϵ→∞ will be large while, conversely, in the case of a
network with a more homogeneous population distribution (such
as Nigeria) this limit is low.

Conclusion
In this work, we introduced a model for epidemic spreading on
metapopulation network with arbitrary topology. It is structured
as a reaction-diffusion process where the reaction part is that of a
standard SIR model with site-dependent transition rates, while
the diffusive part corresponds to a random walk whose dynamics
is scaled by a parameter which allows us to tune the speed of
mobility with respect to the epidemic spread. This framework is
more convenient than classical single-scale reaction-diffusion
models when conditions such as non-pharmaceutical interven-
tions and behavioral changes become non-standard, altering the
characteristic temporal scales of human mobility.

We provided analytic predictions for the basic reproduction
number R0 in two extreme cases, namely the “diffusion much
faster than reactionˮ regime, thanks to a perturbative approach,
and the “diffusion much slower than reactionˮ regime, where we
make use of the Perron–Frobenius theorem. In the latter case we

Fig. 4 Real human mobility flows used in this study. Metapopulation networks consisting of empirical populations (nodes) and empirical human flows
(links) are shown, embedded in space (coordinates are given by longitude and latitude), in the case of (a) Italy; (b) Florida (USA); (c) Colorado (USA); (d)
Zambia; (e) The Philippines. For Italy, Florida and Colorado flows are movements between provinces or counties, estimated using anonymized GPS
trajectories of mobile apps users and upscaled to the total population. For Zambia and the Philippines, flows are migrations between administrative units
reconstructed through gravity modeling53. The intensity of edge colors is proportional to the observed flows, while node sizes are proportional to the local
population.
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discovered that the global R0 can be well approximated by the
weighted average of the local R0 with the patches’ degrees as their
weights.

In the intermediate regime, the most interesting one, we dis-
covered the existence of a metacritical point on synthetic net-
works and on real human mobility flows. Such a point separates
two distinct regimes observed in the behavior of the critical
threshold, identifying the region of the parameter space where the
conditions for having a non-vanishing attack rate change
abruptly, providing useful information on how the different
interventions to control or mitigate the epidemic in each site
work in combination with travel restrictions.

To the best of our knowledge this type critical behavior in the
curve of critical points has been observed in the presence of
intertwined dynamical processes such as awareness and
epidemics6—where the spreading of awareness about a disease is
able to inhibit the epidemic spreading—and in competing epi-
demics spreading56—where the spreading of a disease is able to
facilitate or inhibit infection by another disease—on multilayer
networks57, but it is the first time that it is observed for multiscale
processes in classical networked systems.

Methods
Derivation of the ϵ-model. Here we explain how to go from Eq. (1) and (2) to Eq.
(3). First of all we recall that Δtepi and Δtmob are the time intervals that we have to
wait in order to get a variation in the number of infected individuals equal to some
arbitrarily fixed value. This value however should be small, because the transition
rates in both Eq. (1) and (2) depend on time, so waiting too long would mean to
change the value of the transition rates. For instance we could decide that Δtepi and
Δtmob are those that you need to have ΔI epii and ΔImob

i equal to 1, respectively.
Now we ask ourselves: at each time step how much of the the variation in

infected individuals is due to epidemics and how much to mobility? In order to

answer that we compute the joint variation in infected individuals after an arbitrary
time Δt

ΔIiðtÞ ¼ βiSiðtÞ
IiðtÞ
NiðtÞ

� μIiðtÞ
� �

Δt

þ ∑
M

j¼1
PjiIjðtÞ � ∑

M

j¼1
PijIiðtÞ

� �
Δt

¼ βiSiðtÞ
IiðtÞ
NiðtÞ

� μIiðtÞ
� �

Δtepi
Δt
Δtepi

þ ∑
M

j¼1
P jiIjðtÞ � ∑

M

j¼1
PijIiðtÞ

� �
Δtmob

Δtepi
Δtmob

Δt
Δtepi

¼ 1
Δtepi

ΔI epii ðtÞΔt þ 1
ϵ
ΔImob

i ðtÞΔt
� �

ð12Þ

From this equation one can see that the contribution to ΔI epii due to the
epidemics is always a factor 1/ϵ larger (or smaller) than the contribution ΔImob

i due
to the mobility, which justify the presence of the 1/ϵ factor in Eq. (3). Finally if we
incorporate the 1/Δtepi factor in the definitions of the rates and then send Δt to zero
we end up with the differential equation of the ϵ-model.

Perturbation theory. First of all we recall that the general form of the next-

generation matrix for the ϵ-model is K ¼ ϵB ϵμI þL>� ��1
and that we can write

it us a sum K ¼ K0 þ ϵ�1K 0 where the terms are defined in Eq. (7). We also recall
that the aim of PT is that of writing the eigenvalues as a power series in the
parameter ϵ−1. In our case it will be sufficient to consider only the expansion up to
second order, that is

λi ¼ λð0Þi þ 1
ϵ
λð1Þi þ 1

ϵ2
λð2Þi þ O

1
ϵ3

� �
ð13Þ

The unperturbed eigenvalues are simply λð0Þi ¼ βi=μ, which are the “localˮ basic
reproduction numbers, meaning the values that R0 would assume inside each patch
if they were all isolated, while the unperturbed eigenvectors are those of the

Fig. 5 Criticality in empirical networks characterized by measured human flows and population distribution. The panels show the dependence of the
attack rate on the scale parameter ϵ for different metapopulation networks, each one identified with the ISO 3166-1 alpha-3 code of the country it describes.
Different colors encode distinct stages of the epidemic as shown in the legend. With epidemic stages we simply mean the stages of development of the
epidemic measured using as time unit the time necessary for an epidemic to reach the maximum number of infected (or infectious peak). In all cases, the
critical point ϵ⋆ is clearly visible, since it corresponds to the value of ϵ such that the attack rate is larger than zero. It is worth noticing that such a critical
point is approximately always lower than our analytically found upper bound 1=ðβmax � μÞ represented with a vertical dashed black line (with βmax ¼ 0:2
and μ= 0.1 in this case). The G in each sub-figure indicates the Gini coefficient of the strength distribution of the corresponding network and it is used to
quantify the heterogeneity of each network. Finally, we notice a drop in the attack rate for large values of ϵ: an effect due to the slowing down of the
mobility.
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canonical basis {ei}. On the other hand the first order contribution is

λð1Þi ¼ e>i K
0ei

¼ � e>i
B

μ

L>

μ
I þL>

ϵμ

� ��1

ei

¼ � βi
μ

L>
ii

μ
� ðL>2Þii

ϵμ2
þ ðL>3Þii

ϵ2μ3
� ¼

 ! ð14Þ

Putting together the first two terms of the power expansion (Eq. (13)) we get

R0 ¼ βmax

ϵ

μϵþ ð1� Pmax;maxÞ
þ Oðϵ�2Þ ð15Þ

where the max index points to the node with the highest transmission rate βmax.
For the second order in PT the key factor to compute is

e>i K
0ej ¼ �e>i

B

μ

L>

μϵ
I þL>

ϵμ

� ��1

ej

¼ �e>i
B

μ
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μϵ
�B

μ

L>

ϵμ

� �2

þB

μ

L>

ϵμ

� �3

� ¼

" #
ej

¼ βi
μ

Pij ∑
1

n¼1
ð�1Þn n

ðμϵÞn þ ðP2Þij ∑
1

n¼2
ð�1Þn

n
2

� �
ðμϵÞn þ ¼

� �

¼ βi
μ

�Pij
μϵ

ðμϵþ 1Þ2 þ ðP2Þij
μϵ

ðμϵþ 1Þ3 � ¼
� �

¼ βi
ϵ

ðμϵþ 1Þ2
P

I þP=ð1þ μϵÞ

� �
ij

ð16Þ

Putting this in the formula for the second order contribution and adding it to Eq.
(15) we obtain Eq. (7).

The ϵ→ 0 limit. We now approach the problem of computing the next-generation
matrix K= FV−1 for an arbitrary mobility network. We proceed step by step by
computing one piece at the time, starting with the elements of V ¼ ϵμI þL> . This
matrix in general is not symmetric, meaning that the right and left eigenvalues are
different

∑
j
Vijφ

ðnÞ
j ¼ νðnÞφðnÞ

i

∑
j
ψðnÞ
j Vji ¼ νðnÞψðnÞ

i

ð17Þ

where φ(n) and ψ(n) are respectively the right and left eigenvectors of both V and
L> , while the eigenvalues ν(n) of V differ from the eigenvalues λ(n) ofL> by a term
ϵμ. Even though we do not know neither the eigenvectors nor the eigenvalues it is
useful to write the matrix in the following form

Vij ¼ ∑
n
νðnÞφðnÞ

i ψðnÞ
j ð18Þ

Finally if the matrix V is invertible, and we know it is thanks to the term ϵμI, we
can write the first building block of the next-generation matrix, that is

ðV�1Þij ¼ ∑
n

1
νðnÞ

φðnÞ
i ψðnÞ

j ¼ ∑
n

1

ϵμþ λðnÞ
φðnÞ
i ψðnÞ

j ð19Þ

The second step consists in multiplying what we have with the matrix ϵB and then
take the limit for ϵ→ 0. This will lead to

Kij ¼ ϵðBV�1Þij
¼ ∑

n

ϵβi
ϵμþ λðnÞ

φðnÞ
i ψðnÞ

j

�!ϵ ! 0 βi
μ
φð1Þ
i ψð1Þ

j

ð20Þ

where first we wrote the eigenvalues of V in function of those of L> and then we
noticed that the only term in the sum over n who was not multiplied by the the
vanishing ϵ was the one associated to the null eigenvalue of the Laplacian matrix λ
(1)= 0, that corresponds to ν(1)= ϵμ.

Fortunately for us we know that the eigenvectors corresponding to the
stationary states are

φð1Þ ¼ 1
2m

s1

..

.

sn

0
BB@

1
CCA and ψð1Þ ¼

1

..

.

1

0
B@

1
CA ð21Þ

where si is the strength of the i-th node.
Finally we can apply the corollary to Perron–Frobenius theorem mentioned in

the main article, but instead of doing it on K we do it on K⊤ which has the same
spectrum and the property of having all the rows equal to each other, so that upper

and lower bound coincide and we get that the spectral radius of K is exactly that
written in Eq. (10).

Mobility networks data. Our analysis of real human flows are based on (i)
mobility flow networks and (ii) local population that were obtained from a broad
range of different data sources. We have in general two types of flows: estimated
and empirical. In the estimated category fall the flows for Senegal (SEN), Nigeria
(NGA), Zambia (ZMB), China (CHN), India (IND), Mexico (MEX), Brazil (BRA)
and the Philippines (PHL). In this case the data are therefore not representing real
flows but the estimated internal human migration flows in a series of countries
where malaria is endemic. The reconstruction is the product of the complex data-
fusion of census-based migration microdata, which are assimilated through gravity
modeling. For further detail please refer to the Data Descriptor53. Being the local
population resident in the nodes not part of the data shared, we used as a proxy the
total out-bound flow, which we upscaled so that the sum of all nodes populations
was equal to the total population of the country. All other datasets represent
instead empirical flows and are associated with node population estimated from
census data. The FRA, ESP and PRT49, CIT7 and TUR33 are reconstructed from
Call Details Records, which provide information on the position (closest antenna)
and time for each phone call, texting, or internet access of mobile users, which are
recorded by the mobile companies for billing purposes. Please refer to the cited
papers for the data availability of the respective dataset. The flows for USA (Florida
and Colorado) are estimated on the basis of data kindly provided by Cuebiq, a
location intelligence and measurement platform that collects privacy enhanced
GPS trajectories from mobile apps users who have opted-in to provide access to
their aggregated location data anonymously. Cuebiq provided us with information,
on a weekly basis, about: (i) the ratio of users who have been seen moving between
county i and county j to the number of users seen in county i ratioZij= (users
flow)ij/(county users)i (ii) the ratio of devices that we see in county i to all the
devices seen across all counties Ui= (county users)i/(total users). We therefore
upscaled to the values of flows one would have if the movements observed were to
represent the entire population with the formula

Zij ¼ ratioZij ´Ui ´Pop ð22Þ

where Pop is the total population across the country considered here, the United
States of America. For this analysis, we selected only the flows associated to the first
week of 2020, so before the diffusion of the COVID-19 epidemics in the USA.
These data are available from the authors upon request. Finally, also the flows of
Italy (ITA) are derived from Cuebiq data, which in this case are again publicly
available and we invite to refer to the Data Descriptor50 for more details on the
methodology. The italian flows shared capture the fraction of the total userbase
moving between two italian provinces. We upscaled to the total population by
simply multiplying by the population data obtained from census. In this case, we
analyzed the flows associated with the 18th January 2020, before the beginning of
the COVID-19 pandemic.

The fundamental descriptors of these networks can be found in the in Table 1.

Table 1 Table of the fundamental properties of the networks
that appear in Fig. 5.

Country # of nodes # of edges Gini

France 329 40,203 0.48
Spain 47 2125 0.39
Portugal 278 15,045 0.64
Italy 107 1454 0.38
Senegal 34 1121 0.45
Ivory Coast 237 20,117 0.6
Nigeria 38 1405 0.28
Zambia 72 5111 0.37
China 30 869 0.22
India 32 991 0.51
USA (Florida) 67 901 0.65
USA (Colorado) 63 694 0.84
Turkey 466 28,635 0.9
Mexico 32 991 0.41
Brazil 27 701 0.54
Philippines 77 5851 0.55

The bold font indicates the type of information contained in the corresponding column. Here the
word “Giniˮ refers to the Gini coefficient of the strength distribution of the corresponding
network, while the symbol # stands for the word “numberˮ.
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Simulation methodology. Here we put all the information on the Figs. 2 and 3
that we could not fit in the main text.

For instance in Fig. 2 both the networks had n= 500 nodes. The Erdős–Rényi
network was undirected and sampled using a wiring probability p= 0.04; the
Barabási–Albert network was also undirected and sampled adding at each time step
a single edge. In both networks the weights were random integer numbers between
1 and 50, drawn from a uniform distribution. Finally in both the networks the
transmission rates {βi} were chosen in such a way that the Rmin

0 2 ½0:95; 1:05� while
βmax ¼ 2μ (where μ was set equal to 2). In order to do that we proceeded as follow:
first we sampled {βi} from a normal distribution centered in μ and with a standard
deviation of 0.2. Then we set the maximum value equal to 2μ. Finally we added a
cycle in which we computed the Rmin

0 of the current distribution and if it did not
belong to the mentioned interval every βi except the maximum one were rescaled
by the current value of Rmin

0 . The process was repeated until Rmin
0 was in the desired

interval.
The same sampling technique for the {βi} distribution was used in Fig. 3, but in

this case we had μ= 2 and βmax ¼ 6μ while Rmin
0 was a variable. The reason why we

chose to sample the transmission rates in this way is that every curve R0(ϵ) is
uniquely identified by its maximum and minimum value, so if one’s aim is to
observe how the critical point depends on Rmin

0 we have to keep everything else
constant, even βmax. If we had allowed βmax to vary too we would have ended up
comparing completely different curves and any information about the metacritical
point would have been lost.

Finally for the simulations in Figs. 3 and 5 we used the R package called
“deSolveˮ with a time step of minð1; ϵÞ=10.

Data availability
The data on Senegal (SEN), Nigeria (NGA), Zambia (ZMB), China (CHN), India (IND),
Mexico (MEX), Brazil (BRA) and the Philippines (PHL) have been taken from an open
access dataset53 produced within the WorldPop project. The flows for France (FRA),
Spain (ESP) and Portugal (PRT) come from49, those of Ivory Coast (CIT) from7 and
those of Turkey (TUR) from33. The data regarding Italy (ITA) come from Cuebiq data
(see the Data Descriptor50 for more details on the methodology). Finally the data on USA
(Florida and Colorado) were also provided by Cuebiq and are available upon request.

Code availability
The script we used can be find at https://github.com/PGcastioni/Epidemics-and-
Mobility.
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