
Assessing the Effectiveness of the Shared Responsibility Model for Cloud Databases:
the Case of Google’s Firebase

Biniam Fisseha Demissie
Fondazione Bruno Kessler

demissie@fbk.eu

Silvio Ranise
Fondazione Bruno Kessler and University of Trento

ranise@fbk.eu

Abstract—
Migrating databases to the cloud requires the adoption of the

shared responsibility model for protecting data. The database-
as-a-service provider secures the database from different kinds
of attacks while the developer defines the access control policy to
prevent unauthorized access. Recent reports show that developers
fail to properly secure their cloud databases leading to sensitive
data leaks. In this paper, we investigate the prevalence of the
access control misconfigurations in 50K+ top Android apps that
use one of the most popular cloud database services, namely
Firebase. Overall, we found 763 apps (1 billion downloads) with
public databases and 536 apps (630 million downloads) with
world-writable databases. Considering the popularity of these
apps and the cross-platform nature of Firebase databases, our
findings reveal a worrying state in the adoption of the shared
responsibility model for the security of cloud databases. To assist
developers, we make our prototype tool publicly available as an
Android Studio plugin. The plugin performs static analysis to
automatically extract Firebase database information from the
app under development and checks its configuration status.

I. INTRODUCTION

With currently more than two billion devices running it,
Android is the most popular mobile operating system in the
world [38]. It is used by devices ranging from smartphones
and tablets to wearables, smart TVs, and automobiles. The
proliferation of Android devices has created a good business
opportunity for novice developers to create and distribute
applications (herein apps) easily using the centralized Android
market, called Google Play, targeting millions of users. Google
Play is now the biggest app store in the world, and as of
September 2020, it has more than 3 million apps available for
download [39].

To provide valuable functionalities to their users, most apps
rely on either local or remote databases. When apps involve
users (e.g., social apps) or have a continuously changing
content (e.g., news apps), they rely on remote databases.
Developers can either set up their own remote database servers
or integrate a cloud database service from one of the many
providers.

According to Gartner Inc., by 2022, 75% of all databases
will be deployed or migrated to a cloud platform [20]. More
and more developers are moving to cloud databases for their
web and mobile app development. Google is one of the many
cloud service providers with different cloud databases.

Google’s Firebase cloud service is one of the most popular
among app developers with notification, analytics and database
services among others. The fact that it comes integrated with

Android Studio, the official development environment for An-
droid, and its ease of configuration makes Firebase the obvious
choice for Android developers. Though developers can deploy
Firebase database instances easily, enforcing the appropriate
access control policy is a non-trivial task and developers often
make mistakes and expose their cloud database instances [8].

Cloud databases adopt the shared responsibility model
where the service provider ensures security of the cloud
(e.g., infrastructure, virtualization, communication, etc.) and
the developer ensures proper access control policies to avoid
unauthorized access to sensitive data [4]. Though the service
provider side is secure enough, misconfiguration of the access
control policy, however, could lead to data leak.

The first report regarding access control misconfiguration
of Firebase databases was seen in mid-2018 where 113GB of
data over 2,271 databases from thousands of Android apps
containing millions of user’s data have leaked [42]. Several
months later, the then-new and popular dating app called
Donald Daters for President Trump supporters, has leaked its
entire database on the first day it was launched containing
user sensitive data including chat conversations [40]. A year
later, Twitter’s popular video app Periscope misconfigured its
database that gave write privilege to anonymous users [21].
Moreover, at the time this security misconfiguration was
reported to Twitter, their security team did not see the impact
of having a publicly writable database (however, they have
later acknowledged and fixed the security issue).

Later, Google announced on Firebase Summit that they have
improved their Firebase console to warn developers of the
possible misconfiguration of their database [17] and send email
notifications to the developers. With all these incidents making
headlines and the improvements Google is continuously doing,
one would assume that the problem is no longer relevant. A
recent report [8], however, shows even more apps failing to
properly configure their databases.

In this paper, we assess the effectiveness of the shared
responsibility model by taking the Firebase cloud database
service as a case study. We first investigate Firebase database
security and the peculiar access control system features it im-
plements. We then walk through the steps a developer usually
takes to develop a simple app to better understand where the
security misconfiguration may occur. Different from previous
nonscientific reports ([8], [42]), instead of taking a random
snapshot of current apps, we investigate Firebase database
misconfigurations among top Android apps from 2016, 2019

Firebase	DB

Web	&	mobile	app Web	server DBMSApplication	server

B:	Cloud	DB	Based

A: Traditional	DBMS	based

Fig. 1. Applications with (A) traditional DBMS and (B) with Firebase cloud
database

and 2020. Top apps are downloaded by hundreds of millions
of users and since they are recommended by Google Play,
they are believed to be of better quality. Security issues that
are common among top apps would require special attention
as they affect millions of users. While the previous reports
looked at potential data leaks only, we assess database ac-
cess control misconfiguration including their world-writability.
Finally, in order to help developers mitigate the Firebase
database security issues, we propose a static analysis tool as an
Android Studio plug-in that assists developers in checking the
accessibility of their Firebase database from their development
environment.

Our investigation shows that 763 apps with close to 1 billion
downloads have public databases exposing sensitive user data,
while 530 apps with more than 630 million downloads have
world-writable databases that could potentially be used to
distribute malware.

The contributions of this paper consist in the:
• analysis of the characteristics of Firebase cloud database

access control policy language in relation to access con-
trols;

• building of an automated tool to statically analyze com-
piled Android apps and perform a security check on their
Firebase databases.

• the empirical assessment of our tool by analyzing more
than 50K top Android apps on Google Play from three
different time periods.

• an open-source static analysis tool as an Android Studio
plug-in that supports app developers to easily check their
database’s access during app development;

The paper is organized as follows. After covering the back-
ground on web and mobile app architecture from database and
security point of view in Section II, security assessment of
mobile apps that use the Firebase database and the method-
ology we used is presented in details in Section III. Then,
Section IV presents results of empirical assessment of our
approach followed by discussions, recommendation, ethical
considerations and tool support. After discussing related work
in Section VII, Section VIII concludes the paper.

II. BACKGROUND

In this section, we present some background notions used
in the rest of the paper.

A. Web and app architectures

A traditional multi-tier architecture for the web describes
the separation of different component groups in a client-
server [19]. Figure 1(A) shows an example of a traditional
web architecture organized in distinct tiers. The presentation
tier is responsible for displaying information in a structured
way while the application logic tier processes user queries and
either reads or writes to the persistence tier and responds with
the appropriate data. Note that the presentation tier does not
have direct access to the persistence tier. In this architecture,
the database management system (DBMS) is often secured by
the service provider (e.g., the hosting company). The developer
has accesses to the database via some kind of console while
clients do not have direct access.

Figure 1(B) shows an architecture using the Firebase cloud
database in place of a traditional DBMS. As it is evident
from the figure, the presentation tier can directly interact with
the persistence tier. This means that read, write or update
requests can directly be sent from the presentation tier to
the persistence tier. In this architecture, since the client has
direct access to the database, the developer is responsible to
properly configure the database access control in order to avoid
abuse from untrusted clients. If the database is not properly
configured, user sensitive data could be stolen, modified or
deleted by malicious users [42].

In cloud databases, tenants are handled at the level of
projects where databases of different applications are hosted in
the same logical domain and are tagged with unique identifiers
(project IDs in this case). In the multi-tenant model, the
responsibilities for maintenance and establishment of secure
database environment rely solely on the cloud provider. This
could give developers the wrong impression that everything
regarding security is handled by the cloud service provider
where in reality the responsibilities are shared.

Below (in Section II-B), we introduce Firebase databases
that are instances of cloud databases. Later (Section II-C), we
present how access control policies can be specified to secure
Firebase databases. We then provide a motivating example (in
Section II-D) that highlights some of the challenges developers
might face when using Firebase databases.

B. Firebase Database

Firebase is a mobile and web application development
platform that provides database services such as Realtime
Database and Cloud Firestore. Data is stored in JSON format
and synchronized in real-time to every connected client. Apps
developed either for iOS, Android or web share one Realtime
Database instance and automatically receive updates with the
newest data.

In general, we can abstract the operations (requests) in
Firebase databases into two general operations, namely read
and write. Hence, if no granularity is needed, we can simply
allow/deny read or write operations. Read requests allow apps
to either get one specific document or a list of documents.
A misconfiguration of access control rules for read operation
might lead to sensitive data leaks (e.g., if the database contains

Document_1

User_1

Document_1

User_n

…
• Title
• Content
• State
• Creation	time
• Last	modified

• Title
• Content
• State
• Creation	time
• Last	modified

Fig. 2. Non-relational data structure for a note-taking app

personal identifiable information or PII). Write requests allow
apps to create, update or delete a document (or documents). A
misconfiguration of access control rules for write operations
may have severe consequences as it allows attackers to modify
contents (e.g., advertisement IDs, user posts or comments, app
configurations), insert contents (e.g., hosting illegal content
anonymously), or delete/wipe the entire data.

C. Access Control Features of Security Rules
We now discuss how Security Rules implement some of the

desiderata an access control service should have [10].
• Conditions and support for abstractions:

Firebase Security Rules for Firestore and Cloud Storage
support conditions that the developer can specify (e.g.,
request time, email verified, etc.). Since there is no
catalog of abstractions that can be used, it is entirely
up to the developer to introduce an appropriate set of
attributes that are needed to define the desired abstraction.
Since the developer has to manage users (subjects) and
data (objects), he/she can include roles, groups or other
relevant attributes to users and data collections to achieve
abstraction.

• Positive and negative authorizations: When database
Security Rules are not specified or when multiple Rules
are specified for a given path, the access control system
should use the appropriate conflict resolution strategies
among those available in the Firebase databases.
– Closed vs open policy:

All Firebase databases adopt a deny by default strategy
and a developer has to write specific allow rules to
grant access. For example, allow read; will allow
read access to all documents in Cloud Firestore under
a given path.

– Incompleteness vs inconsistency:
If no authorization is specified, by default access is
denied. On the other hand, if both allow and deny
(positive and negative authorization) are specified, the
allow will take precedence during conflict resolution.
According to the documentation, Security Rules are
intended in disjunction and not in conjunction. Conse-
quently, if multiple rules match a path, and any of the
matched conditions grants access, Security Rules grant
access to the data at that path.

D. Motivating Example
To better understand the security challenges app developers

might face when moving from a traditional database to a

cloud-based non-relational database such as Cloud Firestore,
we consider the development of an app for taking notes.
The development is inspired by a real-world scenario [16]
and highlights the main issues a developer has to face when
defining security policies to secure the app deployment.

Let us start by designing the data structure representing
notes and users. Each user can only add, edit or delete his/her
own notes and should not have access to other users notes. This
implies that users have to be authenticated and authorized to
access content. One way that we can design the data structure
is as shown in Figure 2. Every user will have zero or more
documents (notes). Every document will have basic fields
(attributes) such as title, content, creation time and state (e.g.,
a flag to mark deletion).

In order to have user-based access system that keeps users’
data safe, we first need to implement authentication. This
could be achieved by using Firebase Authentication with,
e.g., OpenID Connect [35]. Assuming this has already been
implemented in our app, we then proceed to securing our
database.

There are several ways one can secure the database. One
obvious way is represented by the Security Rule in Listing 1.

Listing 1. Security Rule for a note taking app
1 service cloud.firestore {
2 match /{collection}/{documents=**} {

3 allow read,create,update: if
request.auth.uid == collection;

4 }
5 match /{documents=**} {
6 allow read, write: if false;
7 }
8 }
9 }

The rule allows read, create and update operations (line 3) to
any document (note) in a given collection (line 2) as long
as the collection matches the user ID requesting the operation.
For example, for the path /User_1/Document_1, only
user with ID User_1 is allowed to perform the read, create
and update operations to document Document_1. For any
other document (line 5), it blocks read/write access (line 6) to
everybody. Note that the request coming from the client (web
or mobile app) is properly signed and Firebase’s authentication
service (called Firebase Auth) is responsible for verifying
whether the request is coming from the right user. Therefore,
one cannot spoof the user ID in order to access someone else’s
document.

We observe that, in general, the Security Rules highly
depend on the data structure that developers define at the
beginning of the design. If the data structure changes during
development, developers might also need to adapt the access
control configuration accordingly. Let us now assume, for
example, that we want to add the possibility to share a note
with other users. For users to be able to see other’s notes, we
can first modify the note data structure to have a ”public” field
(e.g., {"public" : true}) that marks whether a note is
made public. We then modify the rule on line 3 of Listing 1 to
include a check if the specific document has the public field
set as shown in Listing 2 below. This code allows access to
the specific document if the request comes from the owner or

if the document is public.

Listing 2. Updated Security Rule to support note sharing
...
allow read,create,update: if request.auth.uid ==

collection || resource.data.public == true;...

For ease of development and debugging, we might be
tempted to disable the access control altogether. In fact, as
acknowledged by Google in the Firebase Summit [17], the
common development pattern is making the database initially
public, develop a working initial app, then secure the database
and publish the app. However, developers often forget the fact
that their database is public/open by the time they ship their
app. Moreover, depending on the complexity of the app and
the underlying data structure, even if a developer attempted to
secure the database, it is still possible to make configuration
mistakes.

In general, developers may find it difficult to define Security
Rules that adequately capture the security goals of their apps
because of several reasons. One of the most important reason is
related to the paradigm shift from traditional database systems
(such as MySQL) to NoSQL [27] cloud databases (such as
Cloud Firestore) where access control policies are applied at
the level of paths instead of tables. This might become even
more complicated when policies involve hierarchical paths.

A malicious user can easily extract misconfigured Firebase
database information from web or mobile apps and dump the
entire database potentially containing sensitive user data or
even wipe the entire database.

Even if a developer is aware of the security issues associated
with Firebase databases and attempts to define some Security
Rules, app complexity could still lead to data leaks due to
misconfigurations.

In this paper, we investigate the trend in Firebase database
access control misconfigurations in top Android apps down-
loaded from Google Play in 2016, 2019 and 2020.

III. SECURITY ASSESSMENT OF MOBILE APPS THAT USE
FIREBASE DATABASES

In order to investigate if developers are applying the right
configuration to their Firebase cloud databases, we designed
and deployed a large scale assessment of top Android apps
(”top selling free” on Google Play) downloaded in three
different time periods. Even if Firebase databases can also be
used in web apps, considering its popularity among Android
app developers, we decided to investigate the misconfigura-
tions on Android apps. To this end we developed a static
analysis tool that analyzes an Android app, extracts database
information and checks for misconfiguration.

The fact that top apps are suggested by the official store
makes us assume that these apps are presumably of certain
quality. If security issues are very common in these top apps,
we can assume that less popular apps, developed by less
professional developers or hobbyists might also have similar
security issues.

Since database information (endpoint) can statically be
extracted from an Android app, API security testing of the

Firebase	Project	ID

DB/Collections/Path

Static	analysis

Candidate	end-points

DB	Security	
Check

Public	DB

Non	Public	DB

Writable

Potential
vulnerability

Fig. 3. Static analysis workflow

endpoint would tell us if the database is configured to allow
read, write or both. Though there are use cases where a
developer might need to give read access to any client (e.g.,
access to app configuration information), write access to
unauthenticated client is most likely a misconfiguration.

The lack of awareness and better communication/tool from
cloud service providers is likely to give developers the false
impression that security is handled by the cloud service
provider that provides the database-as-a-service. Though the
cloud service provider protects the developer data from differ-
ent kinds of attacks, the split responsibility model makes the
user of the database service (i.e., the developer) responsible
for defining the appropriate access control policy (i.e., Security
Rules) in order to secure the database deployed in the cloud.

In this section, we introduce the static analysis tool that
we have designed and developed to perform a large scale
assessment of Firebase database misconfigurations of more
than 50K popular Android apps downloaded from Google
Play.

A. Static analysis

We now describe the static analysis technique that we have
designed and implemented to extract Firebase database details
from Android apps and check for access control misconfigu-
ration. We then show how it can be used to perform a large
scale analysis on apps downloaded from Google Play.

Figure 3 summarizes the workflow. Given an Android app,
the first step is to infer whether the app uses Firebase. If the
app uses Firebase, we extract the database location (project
ID). We then extract possible paths from the app source code.
Paths represent collections or documents. Once we collect
database location and paths (candidate end-points), we can
query and establish if the database content can be exfiltrated
or overwritten labeling the app potentially vulnerable or
secure otherwise. In the following, we describe each step in
details.

Firebase Project ID Extraction: We implemented a static
analysis tool that, given an Android app package (APK), it
first uses the Linux strings command to check reference
of the string firebaseio.com on the entire app (i.e.,
unlike previous approaches such as [8] not only limited to
XML resources but also bytecodes). The domain is where
Firebase projects reside and hence its reference is a good
indicator of usage. This is the fastest way to check whether
an app uses Firebase without decompiling it. The output of
this step is a URL pointing to the project endpoint. If no
reference is found, we decompile the app and check the
res/values/string.xml resource for existence of the
project_id field. An example Realtime Database endpoint
for a project with ID my-project is

https://my-project.firebaseio.com

Collection (Path) Extraction: If the app uses Firebase, then
we perform further analysis to extract possible collection or
document names. Collection or document names give us the
different databases (e.g., Users database) under the given
project. Document or collection name extraction requires a
more advanced static analysis on the bytecodes to extract
the string constants used as path on actual parameters of
database function calls such as getReference(path) or
child(path). The process starts by identifying call-sites
to the interesting database functions (i.e., those used to get
references to databases or collections [15]). Starting from
each call-site, we perform backward data dependence on
the register that holds the actual parameter until we reach
the definition. If the definition is a constant assignment, we
collect the constant as a potential path. The output of this
step is a list of URLs constructed by combining the project
URL with the collected paths.

Database Security Check: Once the Firebase database URL
and potential databases or collections are extracted, the next
step is to perform a query to Firebase endpoints to determine
first, if we can dump the entire database (i.e., if the database is
public for anonymous users) and second, check if the databases
are world-writable. We expect two major outcomes from this
query:

• Database is not public. In this case Firebase would
return {"error" : "Permission denied"} (or
HTTP error code 403). If the query is to a given path (e.g.,
/cities), the error response could mean either the path is
not public or it does not exist at all. Note that databases
can still be writable as the read and write operations are
protected by two different Security Rules.

• Database is public. A public database that is either read-
only or world-writable. We need to consider four cases:
a public database
– does not have an entry. In this case the response to

the query would be null. If the query is to a given
path (e.g., /cities), the response could mean the given
database (i.e., citites) is actually empty or it does not
exist at all.

– contains data that is intentionally made public by the
developer (e.g., configurations).

– contains sensitive data (e.g., login credentials, user
personally identifiable information) that is made public
because of a broken access control configuration. An
attacker can simply dump the entire database without
any authentication.

– is World-Writable. An unauthenticated user can cre-
ate/modify content.

In order to classify an app as vulnerable or not, careful manual
evaluation of the appropriateness of each of the above cases
should be performed. For example, not all public databases are
vulnerable. A developer could intentionally make a database
public if it contains app configuration information that should

be accessible by all clients. A world-writable database, how-
ever, requires a careful developer inspection as it could easily
be used by malicious users to store and share illegal contents.

Note that in some cases, when the public data is too large,
dumping the entire database at once will fail with the er-
ror message "error" : "Payload is too large".
In such cases, a recursive shallow query might be required
in order to dump the entire database. A shallow query limits
the depth of the response and returns just the top-level data-
structure. For example, if a database contains users and
messages collections, a shallow query would return the
following response without the contents in the collections.

{
"users": true,
"messages":true

}

From this response, an attacker can learn that the database
contains users and messages collections and can attempt
to dump each one separately. If any of the attempts fail, further
shallow queries can be performed on the collection to get the
top-level data-structure and repeat the same process until the
entire data is dumped.

An example query to check if the entire Realtime database
is public for a project with ID ”my-project” is to perform the
following simple GET request where the variable $path is
empty:

wget "https://my-project.firebaseio.com/$path.json"

On the other hand, if we want to check the path /users,
we set the variable $path to ”users” and perform the GET
request. We iterate through the list of potential path strings
that we statically collected and check whether the paths have
public databases.

In order to check whether a database is world-writable,
we carefully crafted a script that inserts and then removes a
unique entry without affecting the existing data. We first verify
that the database does not contain the unique entry before
insertion attempt. Insertion is a PUT request while deletion is
a DELETE request to the endpoint.

We script the whole process and perform the analysis on
the entire popular app dataset. At the end of the analysis,
for each app, the static analysis tool produces output with
the following contents: Firebase database endpoint(s), world-
writability status, and a dump of shallow query results and a
dump of the entire database if public.

IV. EVALUATION

In this section, we evaluate our approach and the state of
the shared responsibility model for Firebase cloud database
security with some experiments. Though we investigated top
Android apps, Firebase is a cross-platform service used across
multiple platforms such as iOS and web. The goal is to
understand whether popular (presumably good quality) apps
are protecting their cloud database properly. This would give
us the general picture of the Firebase cloud database security
of more than 3 million Android apps on Google Play pub-
lished by developers with different expertise. The empirical
evaluation is guided by the following research questions.

• RQ1
¯

: How common is for the top apps using Firebase to
have public database?

• RQ2
¯

: How common is for top apps to make their Firebase
database world-writable?

• RQ3
¯

: What is the impact of database misconfigurations
in top Android apps?

The first research question RQ1 investigates how many pop-
ular apps have their database publicly accessible without
any authentication. A public database could be empty or
could contain some data such as app configurations or users’
sensitive data. Indeed, an app is considered vulnerable if its
public database contains sensitive data. The second research
question RQ2 investigates how many of the popular apps have
their database world-writable. Though there are few use-cases
where a database might require world-writable access control
policy for anonymous users (e.g., comments or feedback
feature for all users), in most cases, it is an access control
policy misconfiguration. With the last research question RQ3,
we investigate the impact of the database access control
misconfiguration. Considering that top apps have millions of
downloads, a policy misconfiguration in these apps could
impact millions of users.

A. Subject Apps and Experimental Settings

For our study, we considered top Android apps from three
different time periods. Note that these are all the apps that
Google Play offered at the time of the download:

• DataSet1: Top apps in 2016. We collected all the avail-
able top Android apps in July 2016 from Google Play.
This dataset contains around 14K apps spread across 29
categories.

• DataSet2: Top apps in 2019. We collected all the available
top Android apps in February 2019 from Google Play.
This dataset instead contains around 24K apps spread
across 57 categories.

• DataSet3: Top apps in 2020. We collected all the available
top Android apps in February 2020 from Google Play.
This dataset contains around 11K apps spread across 58
categories.

Unlike previous reports [8] that perform similar investi-
gation on a snapshot of random apps, we resorted to top
apps from three different time periods. This dataset choice
is motivated by the fact that (i), top apps are recommended
by Google Play and are believed to be well accepted by users,
and (ii), the different time period gives us the trend in Firebase
usage and misconfigurations. Weaknesses in these apps would
potentially affect millions of users.

Note that availability of these apps for download depends
on the kind of Android device we used for downloading (e.g.,
architecture or Android version compatibility) and the location
(e.g., some apps not being available in some geographic
region).

While extraction of Firebase related details from a given
app is quick (less than a minute in the worst case), dumping
database content depends on network connectivity speed and

size of the database. During this analysis, we did not observe
any throttling or blockage from Firebase servers. Requests
were made via wget without any attempt to spoof the user-
agent or add request headers to bypass any limit.

Results are confirmed based on standard error codes (200,
403, 404...etc) and response body (e.g., null) when read-
/write operations are performed.

The analysis has been conducted on a machine equipped
with an Intel Core i7-8700, 3.2 GHz processor with 16 GB of
RAM running Ubuntu 18.04 LTS.

RQ1: How common is for the top apps using Firebase to
have public database?

In order to answer RQ1, we queried the Firebase database
endpoint that we statically extracted from the different
datasets. We then perform an HTTP GET request to these
end-points to get shallow data (i.e., limits the depth of the
response and returns just the top-level data-structure). If our
query returns HTTP status code 200, we conclude that the
apps database is public. Column 4 of Table I shows the
result of the analysis. For Dataset1, 8.4% of the apps using
Firebase have their database public. Out of the 6789 apps using
Firebase in Dataset2, 6.9% of the apps have their database
publicly accessible. In 2020, however, even if almost 50%
of the apps are using Firebase, the percentage of apps with
publicly accessible database is lower than previous years with
only 4.7% of the apps having public database. Note that this
analysis does not differentiate between public databases with
and without data (i.e., null data).

It is common to find public database even in top apps.
Since these are popular apps with millions of downloads,
even having fewer percent of the total apps having
public database could affect millions of users.

RQ2: How common is for apps to make their Firebase
database world-writable?

To see if it is common to find apps with world-writable
database, we considered the apps with public database. Similar
to RQ1, we used the statically extracted database endpoints
to perform HTTP PUT request with carefully crafted unique
input (see Section III-A) and verify whether it was successful.
Note that the inserted unique content does not interfere with
existing data and app functionality. Once we verify that the
operation was successful, we remove the inserted data and
conclude that a write operation is permitted by the access
control policy. We ran the analysis for all the apps with public
database and the results are presented in column 5 of Table I.
For Dataset1, all the apps that have public database also have
their database world-writable. This could be because these
apps were early adopters and were not aware of the security
implication of their open database. Another reason could be
the lack of resources to learn about proper configuration of
the access control policy. In Dataset2, 71% of the apps with
public database have also world-writable database. Even if
there is a three-year gap between Dataset1 and Dataset2, the
security of the databases did not improve much. This can also

Dataset Total Apps Apps Using FB (% of total apps) Public DB (% of apps using FB) World-Writable DB (% of public DB)
DataSet1 14213 381 (2.68%) 32 (8.4%) 32 (100%)
DataSet2 24432 6789 (27.8%) 471 (6.9%) 335 (71%)
DataSet3 11585 5537 (47.8%) 260 (4.7%) 169 (65%)

TABLE I
SUMMARY OF USAGE OF FIREBASE IN ANDROID APPS ACROSS MULTIPLE YEARS

be seen for the latest dataset, namely Dataset3 in which 65%
of the apps having public database also have world-writable
database.

A writable database is very dangerous. In fact, a quick grep
with regex in the dump shows that there are more than 88
Google Play URLs and in general more than 180K URLs. An
attacker that is able to modify these URLs could potentially
be able to distribute malware reaching hundreds of million of
users.

It is common to find popular apps having a world-
writable database. Apps with public database are also
most likely to have their database world-writable.

RQ3: What is the impact of database misconfigurations in
top Android apps?

To answer RQ3, we focused our analysis only on the
recent dataset, namely, Dataset3 because it is the dataset
that reflects the current real-world popularity. To this end, we
collected download meta-data of the apps with world-readable
and writable databases. We consider the number of downloads
as a proxy for popularity. We acknowledge that the number
of downloads does not necessarily reflect current active users.
However, even if a user uninstalls an app or an app is removed
from Google Play, the user data collected by the app could still
remain in the Firebase cloud database at the discretion of the
app developer.

Our analysis on world-writable databases from Dataset3
shows that the number of downloads for these apps ranges
from 100 to 100M with average downloads of 2.9M. The
total number of downloads for all the apps with world-writable
database is, therefore, more than 630M.

On the other hand, the number of downloads for apps
with world-readable databases in the same dataset ranges
from 1K to 50M with average downloads of 2.4M totalling
275M downloads. Note that only public databases containing
data were considered in this analysis as empty world-readable
databases do not pose significant security issues.

With this, we can answer RQ3 stating:
Apps with world-readable and writable databases are
very popular with over 275M and 630M downloads,
respectively, potentially impacting millions of users.

B. Discussions

The above results show us our proposed static analysis based
approach is effective in identifying Firebase databases miscon-
figurations. Indeed, we were able to find more than 700 apps
with database misconfigurations. We can also observe from
the results that the shared responsibility model for securing
Firebase cloud databases appears to be ineffective and needs
some improvement either by the cloud service provider (in
this case Google) or the developers. The service provider can

offer a better access control policy enforcement mechanism
(e.g., easier way to generate policy rules) and limiting access
when a database has a peculiar behavior (e.g., a sudden spike
of list traffic when get was the previously observed traffic).
On the other hand, developers can perform security testing of
their apps before shipping to improve the privacy and security
of end-users.

Developers might be using different email for their cloud
database service and therefore, any communication regard-
ing their insecure database could be missed. A developer
assistance should, therefore, be closer to the development
environment where the developer gets a warnings, for example,
during app build time.

We would like to emphasize that the results presented in
this paper are not retrospective, meaning that even if our
dataset contains top apps from 2016 or 2019, several weeks
after our initial analysis, most of the reported vulnerable
databases are still active to date and are exploitable. Moreover,
our investigation focused only on requests originating from
anonymous clients. Database access control misconfiguration
for authenticated clients is out of the scope of this work and
is considered as future work.

There are several use cases that require a Firebase database
to be publicly accessible. Therefore, we cannot claim every
public database is vulnerable. One simple example where a
developer might need a public database is with advertisement
configuration that both anonymous and authenticated users
should be able to access so that the app can show ads.
However, an attacker could still attempt to exploit a public
database in the following ways. The Firebase database service
provides a free and payed service. For the free version,
developers have few gigabytes of traffic per month for free
and have to upgrade the service if the traffic reaches the quota,
otherwise the service will be interrupted until the next reset
time. Depending on how large the public data is, an attacker
can perform multiple requests exhausting the available quota
for a free service user or costing money for a paid service
user. This could lead to denial-of-service in case of service
interruption or costs money for a pay-as-you-go developer.

Depending on the use-case, this situation could be mitigated
by denying database listing and allowing only get oper-
ations where a client requests one document (of smaller size)
at a time.

There are also uses cases where a database needs to be
world-writable. For example, in order to collect feedback from
all users, a database should allow write operation to both
anonymous and authenticated users. This operation should not
allow the users to update/delete existing data. However, in
most use cases, writing requires authentication. Therefore, a
world-writable database is most likely a configuration mistake
(vulnerability).

Whether it contains data or not, a world-writable database is
more dangerous than a public (readable) database. In addition
to data leaks, attackers could also exploit a world-writable
database in many ways such as: making it a medium to
share illegal content anonymously, push malware installation
by modifying URLs, replace advertisement configurations and
redirect revenue to the attacker or in extreme cases, delete the
entire data.

In general, if we have a world-writable database, data
integrity is no longer guaranteed and depending on the app,
an attacker can perform different malicious operations.

The impact of security issues in Firebase databases mis-
configurations is high as Firebase is used across multiple
platforms. The same database can be shared between iOS,
Android or web apps risking exposure of large user sensitive
data. Though multi-tenancy is not recommended by Google,
we have observed different apps sharing the same database
project.

An important point worth mentioning is the fact that there
are several apps that no longer exist on Google Play but
their Firebase databases are still publicly accessible or world-
writable. These databases could be abandoned by the devel-
oper or are still being used by other apps that we are not aware
of. We were not able to communicate with the developers of
these apps as we could not find their address.

In order to understand if the databases contained user
sensitive data, we create a list of keywords derived from
definition of personal data [7] so that we can grep and
count the occurrences of these keywords and patterns without
actually looking into the data.

A simple grep for the keywords and patterns in the public
data shows that it contains more than 300K user credentials,
5K phone number, 20K IPs, 50K device IDs and 200K URLs.

These apps were downloaded from European Google Play.
This means that most of these apps do not comply with GDPR
policy and are collecting personal identifiable information
(PII) without properly safeguarding the collected data, let
alone informing their users.

In addition to statically extracting the Firebase database
endpoints from apps, one can also consult the many Github
repositories containing list of exposed Firebase databases.
Search engine dorks that attackers use for reconnaissance can
also be used to find exposed databases. Though Google scrubs
search results containing such contents, using the following
dork on Bing.com produces some public databases.

site:.firebaseio.com

Finally, since Firebase databases are effectively API end-
points, some of the top OWASP API security issues might
apply [36]. For example, since developers cannot enforce
rate limits, an attacker performing multiple requests might
exhaust the developer’s quota or cost money causing denial
of service (OWASP API4).

Limitations: The assessment of database misconfiguration
relied on static analysis of compiled code. Hence, the ap-

proach suffers from the inherent problems of static analysis
techniques, such as not precisely analyzing obfuscated code.
For this reason our tool might have failed to extract Firebase
database details from heavily obfuscated apps.

V. ETHICAL CONSIDERATIONS AND DISCLOSURE

In this section, we discuss some of the ethical problems
arising in the context of conducting our large scale analysis
and the process used to disclose our findings to app developers.

The collected potentially sensitive data has been carefully
handled and processed by only one person (one of the authors)
and has been deleted once the study was completed.

As previously discussed (see Section III-A), not to inter-
fere with app functionality when testing for world-writable
databases, we carefully craft a unique content and verify that
the content does not exist before attempting to insert it.

In order to investigate if the public databases contained
sensitive data, we defined a list of keywords and regex patterns
so that we can search the dump for these keywords/patterns
and count the occurrences without actually looking into the
content. Some of the keywords and patterns include: ”pass-
word”, ”device*id”, ”imei”, ”email”, ”message”, ”img*url”,
”profile*pic”, ”profle*image”, etc., and regex patterns for
URL, phone number, IP and email. The keywords are derived
from the definition of personally identifiable information (PII)
in the context of GDPR.

Recall that even if a database is empty, the choice of making
it world-writable may have security implications as it can be
used by attackers to share illegal content anonymously. There-
fore, developers interested in using other Firebase services
(e.g., analytics) must pay attention how their empty database
can be accessed.

Note that not every public database is vulnerable. In fact,
majority of the public databases that we observed have
small file-size hinting their content could be configurations
rather than sensitive user-data. World-writable databases are,
however, highly likely misconfigurations. We, therefore, con-
sidered the 218 top apps with non-empty world-writable
databases for the responsible disclosure. For each app, we
attempted to reach out to the developers via their developer
mail that is listed on Google Play. All mails (except one) were
successfully delivered to the respective developers. In fact, for
most of the apps, we received automatic acknowledgments that
the mail has been received and the responsible person will get
back to us. For each developer, we automatically composed the
mail including the package name, the security problem (world-
readable/-writable), the implication if it contains user sensitive
data (e.g., since the apps were downloaded from European
Google Play, the apps should be compliant to GDPR) and
timeline. Even if we do not disclose the list of apps with
vulnerable Firebase databases, since our analysis is on top
apps, it is easy for a reader to find and exploit these apps.
To avoid this situation, we have provided the developers more
than 30 days to investigate and fix the security problems.

Within two weeks, we received acknowledgments from 17
developers (7.8%) promising to fix their database security

as soon as possible. Most of the developers acknowledged
that they forgot about the security of their database. Some
developers asked us how to fix their database Security Rules.

Considering the liability concern (e.g., for GDPR compli-
ance), most developers that have exposed sensitive user data
might not respond to our report. In order to understand whether
it is because the developers are not reading their emails; they
do not maintain the app anymore or if they have silently fixed
the problem, we rerun our experiment more than two months
later. The results are as follows:

• 60 of the reported apps (28%) fixed the problem by either
modifying the security rules (54 out of 60) or disabling
their databases (the remaining 6);

• Out of the 54 apps that updated their database Security
Rules, 46 apps made their entire database private (denied
read/write access to anonymous clients) while 8 apps
disabled only write access,

• While all the developers that acknowledged the problem
(17) have fixed their databases, 43 apps fixed the security
problem without acknowledging the report.

By observing how the developers fixed their databases, we
can see that granting a write access to anonymous users is
not a common practice. Unfortunately, 158 apps still have
world-writable databases containing some data. We have also
contacted Google’s Firebase team regarding this issue. The
response we received was that they have tried to contact the
developers multiple times to no avail.

VI. RECOMMENDATIONS AND TOOL SUPPORT

One of the basic tenets of web and mobile application
security is to always distrust clients. This also holds in the
context of securing apps using the Firebase cloud infrastruc-
ture, especially in the light of Figure 1(B); from which it is
immediate to realize the importance of configuring appropriate
security rules to mitigate malicious and unfiltered clients
inputs to the database.

A developer that implemented the right authorization on
the client app might assume that all the access requests are
coming from an authorized client. As we have seen previously,
an attacker can easily extract the database information and
perform a direct read/write request to the database server. If the
same access control policy is not enforced on the server side,
then an attacker might be able to easily perform the malicious
operations we presented above.

Authenticated requests, however, can be trusted as the
request signature can be verified for consistency by Firebase
service.

The commonly observed trend, as also acknowledged
by the Firebase team, is making the database public
during development time and shipping the app without
securing the database either because the developer forgot
about it or the app became too complex and security
configuration is postponed for later. Developers should
start from a secure root database and work with less
restrictive paths. This way, attackers that are performing
a large scale analysis by querying the root path (e.g.,

https://my-project.firebaseio.com/.json)
would be blocked.

Lastly, though the most recommended thing to do is to
secure the database with appropriate access rules, in order
to make it more difficult for attackers to perform large scale
automatic extraction of Firebase database details from Android
apps, a developer could apply some basic obfuscations. An
option is to dynamically construct the Firebase project ID
and URL at runtime and use the Firebase APIs to instan-
tiate the database and get reference instead of using the
google-config.json configuration file. In this way, an
attacker performing only lightweight static analysis would
have more difficulty to extract these details. Moreover, since
the Firebase library itself is obfuscated, parameters of calls
to database instantiation functions will be harder to extract
statically.

A. Tool Support

In the previous section, we have discussed that developers
usually create the database structure by setting the access
control policy open with the intent to secure it later. By doing
this, the developers risk forgetting the security of the database
as some of the developers we contacted acknowledged. Even
if Google shows warnings in the Firebase console and sends
out warning emails when databases are configured to be
public, developers of even popular apps continue to leak
their databases. The database console and Android Studio (the
official IDE) are two separate environments. We argue that if
a solution that warns developers about open database is not
integrated into the IDE, the developers will likely forget about
the open database when publishing their app. The multiple
email warnings that are sent by Google could potentially be
missed if the the developer has different Google accounts for
Firebase and Google Play.

To this end, we have developed a prototype tool as a plugin
to Android Studio to assist developers in avoiding the main
security issues highlighted by our large scale analysis. Below,
we describe the tool in more details.

Firebase Checker: We propose a prototype Android Studio
plug-in that automatically checks the security misconfiguration
of the Firebase databases being used in the app under devel-
opment [1]. This tool uses the same static analysis approach
presented in Section III-A and evaluated in Section IV except
in this case the analysis is performed on the app source code
rather than the bytecode. Since the analysis is performed on
the app source code, we minimize the limitation caused by
obfuscation.

When a developer starts the analysis, the tool first checks
the configuration file (google-services.json) to extract
Firebase project ID. It then performs static analysis on the
program source code to detect further reference to Firebase
databases and paths. Once the Firebase database project ID
and the different possible paths are extracted, the tool performs
read and write tests to the different possible paths. The tool
then generates a report with the status of the different end

points such as ”world-readable but not writable.” The devel-
oper can then take action in securing the database based on this
report. The prototype is configured to start the analysis on a
menu item click event. However, one can simply integrate the
analysis tool in the build process so that automatic check can
be performed when building the app. The prototype supports
apps developed both in Java or Kotlin programming languages.

VII. RELATED WORK

Cloud Database Security Security in the context of cloud
database as a service is well studied from the point of view
of secure data outsourcing [2], [3], [22], [25], [28], [37], [43].
The approaches propose privacy-preserving queries where data
at rest and in transit is always encrypted and operations or
queries are applied in the encrypted domain. If an attacker
gains access to the database or interaction with the user, he/she
would not be able to extract clear data. Further research is
done to improve the efficiency of encrypted data queries by
proposing a secure database indexing. While the research on
secure data outsourcing focused on relational databases such
as MySQL, Firebase cloud databases are non-relational (aka
NoSQL) [27]. Since security was not the main feature of non-
relational databases [44], they trade consistency and security
for performance and scalability [34]. Therefore, previously
proposed privacy-preserving security mechanisms (e.g., en-
crypted data) would degrade the performance [31] and hence
would go against the design goal. For this reason, a data breach
on Firebase cloud database has a high risk of compromising
the security and privacy of end-users.

Recent nonscientific studies [8], [42] reported public Fire-
base cloud databases. While these studies analyze a snapshot
of Google Play apps at a certain time, our large scale analysis
is performed on top apps from three different time periods
providing us the trend in misconfiguration. Moreover, while
these studies just check whether a database is public, our study
also reveals world-writable databases.

The most closely related work is by Continella et al. [9]
where the authors perform a similar study on Amazon S3. In
this study, the authors attempt to extract bucket (database)
names from Alexa top 1 million websites. Moreover, the
authors rely on two additional methods to get bucket names,
(i) by generating candidate names using acronyms and
dictionary words, and (ii) by using reverse DNS lookup
queries to S3 IPs. In our study, we extract Firebase database
information by performing static code analysis on top Android
apps from three different years. Amazon S3 can also be used
on mobile apps in place of Firebase databases. Therefore,
this work and our work are complementary.

Static Analysis of Android Apps Static analysis examines
program source code (or binary) without executing the
program. Several previous works used static analysis to
uncover potential security issues in Android apps [11]–[14],
[29], [30], [32], [41]. These approaches mostly relied either
on call-graph analysis or data flow analysis in order to see
if sensitive data can be propagated from sensitive source

(e.g., APIs that require permission) to sensitive sinks (e.g.,
network). WARDroid [33] uses static analysis to extract
web APIs used in apps to perform inconsistency and
vulnerability analysis on the endpoints. Similarly, we rely on
static analysis to extract Firebase project ID/endpoints and
documents/collection/paths to perform access control policy
enforcement checks.

Access Control Policy Misconfiguration There is a wealth
of research in access control policy verification [18], [23],
[24], [26]. In ZELKOVA [5], the authors represent policy
semantics as SMT and use a solver to verify properties in order
to identify possible policy misconfiguration for AWS cloud
database. Bauer et al. [6] use association rule mining to extract
rules from historical accesses. They then use these mined
rules to analyze future policies for potential misconfiguration.
In our case, instead of looking at the policy to look for
property violations, our Android Studio plug-in performs tests
on all possible database paths extracted from the app under
development with combinations of read and write operations
simulating an anonymous user.

VIII. CONCLUSIONS

Mobile and web apps are migrating their database to the
cloud. Google’s Firebase cloud database service is popular
among app developers. The fact that it comes integrated with
Android Studio makes it the obvious choice for developers.
With the shared responsibility model, cloud database users
are responsible for securing their database with the appropri-
ate access control policy. However, Firebase database access
control misconfigurations are becoming more common and are
attracting malicious users.

We investigated the trend of Firebase database access
control misconfiguration among 50K+ top (presumably high
quality) Android apps across several years. While our study
shows that the number of apps with a misconfigured database
is decreasing year by year, there are still several top apps with
misconfigured databases exposing sensitive user data. Since
these apps are very popular, more than 760 million users are
affected. If top apps pose these kinds of security risks, it is
not hard to imagine how apps developed by inexperienced
developers would be handling their databases. These results
show us that there is a need for more work to improve the
security of cloud databases when the shared responsibility
model depends on the inexperienced developer to write the
appropriate access control policy.

The fact that the same database can be shared among
different platforms amplifies the security issues. To assist
developers to improve the security of their Firebase database,
we developed and released an open-source static analysis tool
as an Android Studio plug-in that checks the accessibility of
the Firebase databases used in an app under development.

REFERENCES

[1] Firebase-Checker, https://github.com/biniamf/firebase-checker.

https://github.com/biniamf/firebase-checker

[2] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-
Molina, Krishnaram Kenthapadi, Rajeev Motwani, Utkarsh Srivastava,
Dilys Thomas, and Ying Xu. Two can keep a secret: A distributed
architecture for secure database services. CIDR 2005, 2005.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
Order preserving encryption for numeric data. In Proceedings of the
2004 ACM SIGMOD international conference on Management of data,
pages 563–574, 2004.

[4] Amazon. Amazon web services: Overview of security processes,
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf, last
accessed October 12th 2020.

[5] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming. Semantic-based automated
reasoning for aws access policies using smt. In 2018 Formal Methods
in Computer Aided Design (FMCAD), pages 1–9, 2018.

[6] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Detecting and
resolving policy misconfigurations in access-control systems. ACM
Trans. Inf. Syst. Secur., 14(1), June 2011.

[7] European Commission. What is personal data?, https://ec.europa.eu/info/
law/law-topic/data-protection/reform/what-personal-data en, last ac-
cessed October 12th 2020.

[8] comparitech. Report: Estimated 24,000 android apps expose user data
through firebase blunders, last accessed July 2020.

[9] Andrea Continella, Mario Polino, Marcello Pogliani, and Stefano
Zanero. There’s a hole in that bucket! a large-scale analysis of
misconfigured s3 buckets. ACSAC ’18, page 702–711, New York, NY,
USA, 2018. Association for Computing Machinery.

[10] Sabrina De Capitani di Vimercati, Stefano Paraboschi, and Pierangela
Samarati. Access control: principles and solutions. Software: Practice
and Experience, 33(5):397–421, 2003.

[11] Biniam Fisseha Demissie and Mariano Ceccato. Security testing of
second order permission re-delegation vulnerabilities in android apps. In
Proceedings of the IEEE/ACM 7th International Conference on Mobile
Software Engineering and Systems, pages 1–11, 2020.

[12] Biniam Fisseha Demissie, Mariano Ceccato, and Lwin Khin Shar. Anflo:
Detecting anomalous sensitive information flows in android apps. In
Proceedings of the 5th IEEE/ACM International Conference on Mobile
Software Engineering and Systems. ACM, 2018.

[13] Biniam Fisseha Demissie, Mariano Ceccato, and Lwin Khin Shar.
Security analysis of permission re-delegation vulnerabilities in android
apps. Empirical Software Engineering, 25(6):5084–5136, 2020.

[14] Biniam Fisseha Demissie, Davide Ghio, Mariano Ceccato, and Andrea
Avancini. Identifying android inter app communication vulnerabilities
using static and dynamic analysis. In Proceedings of the IEEE/ACM
International Conference on Mobile Software Engineering and Systems,
pages 255–266. ACM, 2016.

[15] Firebase. FirebaseDatabase, https://firebase.google.com/docs/reference/
android/com/google/firebase/database/FirebaseDatabase, last accessed
April 20th 2021.

[16] Firebase. Build a note-taking app with flut-
ter + firebase, https://medium.com/flutter-community/
build-a-note-taking-app-with-flutter-firebase-part-i-53816e7a3788,
last accessed February 2020.

[17] Firebase. Five tips to secure your app, https://youtu.be/pvLkkLjHdkw?
t=1331, last accessed February 2020.

[18] Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and
Michael Carl Tschantz. Verification and change-impact analysis of
access-control policies. In Proceedings of the 27th international confer-
ence on Software engineering, pages 196–205, 2005.

[19] Martin Fowler. Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[20] Gartner. Gartner says the future of the database market is
the cloud, https://www.gartner.com/en/newsroom/press-releases/
2019-07-01-gartner-says-the-future-of-the-database-market-is-the, last
access in February 2020.

[21] Hackerone. Periscope-all firebase database takeover , https://hackerone.
com/reports/684099, last accessed February 2020.

[22] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving
index for range queries. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 720–731, 2004.

[23] Graham Hughes and Tevfik Bultan. Automated verification of access
control policies. 2004.

[24] Graham Hughes and Tevfik Bultan. Automated verification of access
control policies using a sat solver. International journal on software
tools for technology transfer, 10(6):503–520, 2008.

[25] Murat Kantarcıoglu and Chris Clifton. Security issues in querying
encrypted data. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 325–337. Springer, 2005.

[26] Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing web
access control policies. In Proceedings of the 16th international
conference on World Wide Web, pages 677–686, 2007.

[27] N. Leavitt. Will nosql databases live up to their promise? Computer,
43(2):12–14, 2010.

[28] Jun Li and Edward R Omiecinski. Efficiency and security trade-off
in supporting range queries on encrypted databases. In IFIP Annual
Conference on Data and Applications Security and Privacy, pages 69–
83. Springer, 2005.

[29] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick Mcdaniel. IccTA: Detecting inter-component privacy
leaks in Android apps. In Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015), pages 280–291, 2015.

[30] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:
Statically vetting Android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security, CCS ’12, pages 229–240, New York, NY, USA,
2012. ACM.

[31] R. Macedo, J. Paulo, R. Pontes, B. Portela, T. Oliveira, M. Matos,
and R. Oliveira. A practical framework for privacy-preserving nosql
databases. In 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS), pages 11–20, 2017.

[32] Christopher Mann and Artem Starostin. A framework for static detection
of privacy leaks in Android applications. In 27th Symposium on Applied
Computing (SAC): Computer Security Track, pages 1457–1462, 2012.

[33] A. Mendoza and G. Gu. Mobile application web api reconnaissance:
Web-to-mobile inconsistencies vulnerabilities. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 756–769, 2018.

[34] Lior Okman, Nurit Gal-Oz, Yaron Gonen, Ehud Gudes, and Jenny
Abramov. Security issues in nosql databases. In 2011IEEE 10th
International Conference on Trust, Security and Privacy in Computing
and Communications, pages 541–547. IEEE, 2011.

[35] OpenID. Openid, https://openid.net/, last accessed October 12th 2020.
[36] OWASP. Owasp api security project, last accessed August 2020.
[37] Erez Shmueli, Ronen Waisenberg, Yuval Elovici, and Ehud Gudes.

Designing secure indexes for encrypted databases. In IFIP Annual
Conference on Data and Applications Security and Privacy, pages 54–
68. Springer, 2005.

[38] Statcounter. Mobile operating system market share worldwide ,
https://gs.statcounter.com/os-market-share/mobile/worldwidef, last ac-
cessed November 20th 2020.

[39] Statista. Google play: number of available apps 2009-2020,
https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/, last accessed October 2020.

[40] Techcrunch. Donald daters, a dating app for trump supporters, leaked its
users’ data, https://techcrunch.com/2018/10/15/donald-daters-a-dating-
app-for-trump-supporters-leaked-its-users-data/, last accessed 2020.

[41] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. AmAndroid:
A precise and general inter-component data flow analysis framework
for security vetting of Android apps. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’14, pages 1329–1341, New York, NY, USA, 2014. ACM.

[42] Xda-developers. Millions of users’ data leaked through misconfig-
ured firebase backends, https://www.xda-developers.com/user-data-leak-
misconfigured-firebase-backends/, last accessed February 2020.

[43] Zhiqiang Yang, Sheng Zhong, and Rebecca N Wright. Privacy-
preserving queries on encrypted data. In European Symposium on
Research in Computer Security, pages 479–495. Springer, 2006.

[44] A. Zahid, R. Masood, and M. A. Shibli. Security of sharded nosql
databases: A comparative analysis. In 2014 Conference on Information
Assurance and Cyber Security (CIACS), pages 1–8, 2014.

https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en
https://firebase.google.com/docs/reference/android/com/google/firebase/database/FirebaseDatabase
https://firebase.google.com/docs/reference/android/com/google/firebase/database/FirebaseDatabase
https://medium.com/flutter-community/build-a-note-taking-app-with-flutter-firebase-part-i-53816e7a3788
https://medium.com/flutter-community/build-a-note-taking-app-with-flutter-firebase-part-i-53816e7a3788
https://youtu.be/pvLkkLjHdkw?t=1331
https://youtu.be/pvLkkLjHdkw?t=1331
https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the
https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the
https://hackerone.com/reports/684099
https://hackerone.com/reports/684099
https://openid.net/

	Introduction
	Background
	Web and app architectures
	Firebase Database
	Access Control Features of Security Rules
	Motivating Example

	Security Assessment of Mobile Apps that use Firebase Databases
	Static analysis

	Evaluation
	Subject Apps and Experimental Settings
	Discussions

	Ethical Considerations and Disclosure
	Recommendations and Tool Support
	Tool Support

	Related Work
	Conclusions
	References

